

© Apple Computer, Inc. 2000

I N S I D E M A C I N T O S H

Network Setup

Apple Computer, Inc.
© 2000 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

3

Contents

Figures, Tables, and Listings 7

Preface

About This Manual

9

Conventions Used in This Manual 9
For More Information 10

Chapter 1

About Network Setup

11

Network Setup Architecture 11
Inside the Network Setup Library 14
Network Setup Database Fundamentals 16

Database Structure 16
Database Structure Example 17
Database Operations 19
Preference Coherency 21

Legacy Issues 21
Legacy Synchronization Algorithm 22

Network Setup Version History 23

Chapter 2

Using Network Setup

25

Opening and Closing the Network Setup Database 25
Opening the Database for Reading 25
Opening the Database for Writing 26
Closing the Database After Reading 28
Closing the Database After Writing 28

Working with Entities 30
Listing All Entities 30
Finding an Active Entity 34

Reading and Writing Preferences 34
Reading Fixed-size Preferences 35
Reading Variable-size Preferences 37

4

Writing Preferences 39
Iterating the Preferences in an Entity 40

Working with Sets 42
Finding the Active Set Entity 43
Areas and Sets 48

Protocol-specific Topics 49
TCP/IP Notes 49
Remote Access Notes 53
Modem Notes 54

Notes for Third Parties 55
Storing Third-party Preferences in Apple Entities 55
Network Setup and Third-party Protocol Stacks 55

Chapter 3

Network Setup Reference

57

Network Setup Functions 57
Opening and Closing the Network Setup Database 57
Managing Areas 59
Managing Entities 72
Managing Preferences 83
Preference Utilities 92
Installing and Removing a Notification Callback 94
Application-Defined Routines 96

Network Setup Structures and Data Types 97
Network Setup Constants 104

Entity Classes and Types 104
Wildcard Classes and Types 105

Common Preference Types 106
Per-connection Preference Types 106
Global Preference Types 107
Set Entity Preference Types 108
Backward Compatibility Preference Types 108
Global Backward Compatibility Preference Types 108
OTCfgUserMode Preference 109

Invalid Area ID 109
Result Codes 110

5

Chapter 4

Network Setup Protocol Structures and Data Types

111

Protocol Structures 111
TCP/IP Structures 111
Apple Remote Access Structures 122
Modem Structures 141
AppleTalk Structures 144
Infrared Structures 158

Protocol Constants and Other Data Types 159
TCP/IP Constants and Other Data Types 160
Apple Remote Access Constants and Other Data Types 163
Modem Constants and Other Data Types 170
AppleTalk Constants and Other Data Types 172
Infrared Constants and Other Data Types 173

Glossary

175

Index

179

6

7

Figures, Tables, and Listings

Chapter 1

About Network Setup

11

Figure 1-1

Network configuration prior to Network Setup 12

Figure 1-2

Network Setup in Mac OS 8.5 through the present 13

Figure 1-3

Future Network Setup architecture 14

Figure 1-4

Structure of the Network Setup Library 15

Figure 1-5

Sample organization of the default area 18

Figure 1-6

Reading and writing the default area 20

Table 1-1

Network Setup versions 23

Chapter 2

Using Network Setup

25

Figure 2-1

Set entities reference other entities 42

Listing 2-1

Opening the database for reading 26

Listing 2-2

Opening the database for writing 27

Listing 2-3

Closing the database after reading 28

Listing 2-4

Closing the database after writing 29

Listing 2-5

Finding all entities of a particular class and type 31

Listing 2-6

Printing the user-visible name for an entity 33

Listing 2-7

Reading a fixed-size preference 35

Listing 2-8

Reading the DHCP lease info preference in a TCP/IP network
connection entity 36

Listing 2-9

Reading the user-visible name preference 37

Listing 2-10

Calling OTCfgGetPrefsSize to read a variable-size preference 38

Listing 2-11

Writing a preference 39

Listing 2-12

Printing an entity’s table of contents 40

Listing 2-13

Finding the active set entity 44

Listing 2-14

Finding the active entity of a given class and type 46

Listing 2-15

Finding the active TCP/IP entity 47

Listing 2-16

Packing and unpacking the kOTCfgTCPInterfacesPref
preference 50

Listing 2-17

Encrypting the user’s password 54

8

9

P R E F A C E

About This Manual

This manual describes Network Setup, which is a programming interface that
allows you to manipulate the contents of the Network Setup database. The
Network Setup database contains settings for all of the network protocols
installed on the system. Using Network Setup, you can programmatically
modify any network setting that the user can see in the various networking
control panels.

Conventions Used in This Manual 0

The Courier font is used to indicate text that you type or see displayed. This
manual includes special text elements to highlight important or supplemental
information:

Note

Text set off in this manner presents sidelights or interesting
points of information.

�

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions.

�

� W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems.

�

10

P R E F A C E

For More Information 0

The following sources provide additional information that may be of interest to
developers who use the Network Setup programming interface:

�

Inside AppleTalk,

 Second Edition.

�

Inside Macintosh: Networking with Open Transport.

�

Open Transport Advanced Client Programming,

 available at

http://developer.apple.com/macos/opentransport/OTAdvancedClientProg/
OTAdvancedClientProg.html

Network Setup Architecture

11

C H A P T E R 1

About Network Setup 1Figure 1-0
Listing 1-0
Table 1-0

Network Setup is a system service that allows you to manipulate network
configurations. You can use Network Setup to read, create, modify, and delete
network configurations. Any option that is accessible to the user through the
network control panels provided by Apple is also available to you through the
Network Setup programming interface.

This chapter describes the overall Network Setup architecture and introduces
the terminology needed to understand how to use Network Setup. It assumes
that you are familiar with the existing network control panels provided by
Apple (for example, the TCP/IP control panel) from a user's perspective,
especially the configurations window used to select, duplicate, and rename
network configurations.

Network Setup Architecture 1

Prior to the introduction of Network Setup, each network protocol stack used
its own private mechanism to store preferences and make those preferences
active. Network preferences were stored as resources in files in the Preferences
folder. Figure 1-1 shows the overall network configuration architecture prior to
the introduction of Network Setup.

C H A P T E R 1

About Network Setup

12

Network Setup Architecture

Figure 1-1

Network configuration prior to Network Setup

The architecture shown in Figure 1-1 had a number of drawbacks:

�

There was a control panel for each protocol type, leading to an unnecessary
proliferation of control panels.

�

There was no programming interface for changing network settings. With the
explosion of interest in networking prompted by the rise of the Internet, this
proved to be a problem. Internet setup programs, whether provided by
Apple or by third parties, were required to reverse engineer the network
preferences file format. After changing the files “underneath” the protocol
stacks, these programs had to force the protocol stack to read the new
preferences through a variety of unsupported means.

�

The dependence of third-party applications on the preferences file format
and private interfaces to the protocol stack made it difficult for Apple to ship
modern network features, such as TCP/IP multihoming, and to support the
multiple users feature in Mac OS 9.

�

Resource files are susceptible to corruption when the system crashes.

Network Setup was designed to eliminate these problems by giving developers,
both inside and outside of Apple, a programming interface to modify network
preferences without relying on internal implementation details of the individual
protocol stacks.

Network Setup is being introduced in two stages. The architecture of the first
stage (Mac OS 8.5 to the present day) is shown in Figure 1-2.

TCP/IP

TCP/IP
protocol

stack

TCP/IP preferences

Control panels

Private interface

Private
preferences files

AppleTalk

AppleTalk
protocol

stack

AppleTalk preferences

Remote Access,
Modem,
Dial Assist,
Infrared, ...

C H A P T E R 1

About Network Setup

Network Setup Architecture

13

Figure 1-2

Network Setup in Mac OS 8.5 through the present

The following key points are to be taken from Figure 1-2:

�

The Network Setup library provides a standard programming interface for
manipulating network configurations stored in the Network Setup database.
The database is designed to store network preferences reliably even if the
system crashes while preferences are being modified.

�

The Network Setup library provides automatic synchronization between the
database and legacy preference files. Synchronization allows existing
software with dependencies on the format of those files (such as third-party
Internet setup software, Apple control panels, and protocol stacks) to
continue working in the new environment.

�

Third-party developers are encouraged to migrate to the Network Setup
programming interface, but in so doing, their existing applications in the
field will not break.

�

Network Setup scripting is a bridge between the Network Setup
programming interface and AppleScript. It allows script developers to
manipulate network configurations through a standard AppleScript object
model interface.

The primary disadvantage of the current Network Setup architecture is that the
synchronization between the legacy preferences files and the Network Setup
database is a time consuming operation. Consequently, Apple intends to

Network
Setup

scripting

Legacy
control
panels

Legacy
protocol
stacks

Legacy
preferences
files

Network Setup library

Third-party
application

TCP/IPTCP/IPTCP/IP

TCP/IP
Protocol

Stack

TCP/IP
Protocol

Stack

TCP/IP
Protocol

Stack

Public interface

Network Setup database

Network Setup
aware applications

C H A P T E R 1

About Network Setup

14

Inside the Network Setup Library

remove support for legacy preferences files as soon as possible. Figure 1-3

shows the future Network Setup architecture.

Figure 1-3

Future Network Setup architecture

In the future Network Setup architecture, all developers, applications that
manipulate network preferences will be required to use the Network Setup
programming interface. If you have an application that manipulates legacy
preferences files directly, to guarantee future compatibility you must update it
to use the Network Setup programming interface.

Inside the Network Setup Library 1

Figure 1-4 shows the structure of the Network Setup library itself and its
relationship to the applications that call it. This structure is mostly irrelevant to
programmers who call the programming interface — Network Setup acts like a
“black box”—- but it helps to explain how Network Setup works.

Updated
protocol
stacks

Network Setup library

TCP/IP
Protocol

Stack

TCP/IP
Protocol

Stack

TCP/IP
Protocol

Stack
Public interface

Network Setup database

Network Setup
aware applications

Network
control
panel

Network
Setup

scripting

Third-party
application

C H A P T E R 1

About Network Setup

Inside the Network Setup Library

15

Figure 1-4

Structure of the Network Setup Library

As shown in Figure 1-4, the Network Setup library is divided into four key
components:

�

The low-level database, which is an internal component of the Network
Setup Extension file. The low-level database contains the core database
manipulation engine. It knows nothing about networking — it just moves
bits around. The low-level database is not visible to developers except insofar
as its prefix (“Cfg”) is used by some Network Setup identifiers.

�

The mid-level database, which is the actual programming interface exported
to developers. Its routine names start with “OTCfg”. The mid-level database
passes most requests directly to the low-level database, which actually
executes the request and manipulates the database. The mid-level database
also interfaces with the legacy synchronization module.

�

The legacy synchronization module, which in combination with the
mid-level database, ensures that the database is synchronized with the legacy
preferences files. This module will be removed in a future version of
Network Setup. See “Legacy Synchronization Algorithm” (page 22) for more
information about legacy file synchronization.

�

Most users of the Network Setup programming interface use a high-level
framework to assist them in their task. Apple software uses an
Apple-internal C++ framework for this. This framework is statically linked
into software like the Network Setup Scripting application. Third-party
developers commonly use the MoreNetworkSetup framework, available as
sample code.

Network Setup
extension

Network Setup
aware applications High-level framework

Mid-level database (OTCfg)

Low-level database (Cfg)

Legacy
Synchronization

module

C H A P T E R 1

About Network Setup

16

Network Setup Database Fundamentals

Network Setup Database Fundamentals 1

This section describes the fundamental structure of and operations on the
Network Setup database.

Database Structure 1

The Network Setup database consists of multiple areas. There are two types of
areas:

named areas

 store preferences, while temporary areas are used as part of
the preference modification process. The system currently uses a single named
area, known as the

default area

 (sometimes referred to as the

current area

) to
store all network preferences. While it is possible to create and manipulate other
named areas within the database, doing so does not affect any network settings.
Areas are identified by a unique

area ID

.

Each area contains a number of

entities

 having the following properties:

�

entity reference.

An entity reference uniquely identifies an entity. The entity
reference contains an area ID, which identifies the area in which the entity
resides.

�

entity name.

 A user-visible name for the entity that need not be unique.

�

entity class

 and

type.

 These values, both of type

OSType

, determine the type
of data contained within an entity. There are three entity classes:

�

network connection entity.

 A network connection entity contains
information about a single instance of a network protocol on a port.
Typically there is one active network connection entity per protocol stack,
but on a multihomed computer there can be more. The entity type for an
network connection entity indicates the network protocol of the
connection.

�

global protocol entity.

 A global protocol entity contains configuration for
a protocol stack on a computer. There is only one active global protocol
entity for each protocol stack. The entity type for a global protocol entity
indicates the network protocol whose configuration it contains.

�

set entity.

 A set entity groups global protocol and network connection
entities into a set. The set entity contains entity references to each entity in
the set. An area can contain multiple set entities, but there is one and only

C H A P T E R 1

About Network Setup

Network Setup Database Fundamentals

17

one

active set entity

. The entities referenced by the active set entity
comprise the active network preferences. All set entities have the same
type.

�

icon.

 An entity can include a reference to a custom icon. The custom icon is
not currently used, but may be used by future system software to display a
visual representation of the entity.

Within each entity there are zero or more

preferences

, distinguished by a

preference type

 (an

OSType

). A preference is the atomic unit of data in the
database. When you read or write data, you do so one preference at a time.
Typically the data for a preference is protocol-dependent. Its format is
determined by the entity class and type and by the preference type itself. To
read or write a preference meaningfully, you must know the format of the
preference data. The reference section of this document describes the format of
every preference used by the Apple protocol stacks. In most cases, this
description includes a C structure that mirrors the structure of the preference
itself.

Note

For most preferences, the data format is the same as for the
equivalent resource in the legacy preference files. If you are
familiar with the legacy file format, you should be able to
easily understand the preference data format. See “Legacy
Issues” (page 21) for more information on how Network
Setup synchronizes the database with the legacy
preferences files.

Database Structure Example 1

Figure 1-5 shows an example of how the Network Setup database might be
structured on a particular computer.

C H A P T E R 1

About Network Setup

18

Network Setup Database Fundamentals

Figure 1-5

Sample organization of the default area

Default area

AppleTalk global protocol entity

'opts' preference

...

TCP/IP global protocol entity

'opts' preference

...

"LocalTalk for Printer" AppleTalk network protocol entity

'atfp' preference

...

'port' preference

general AppleTalk preference

user-visible name of this port

"Company Ethernet" AppleTalk network protocol entity

'aftp' preference

...

'port' preference

general AppleTalk preference

user-visible name of this port

"AirPort" TCP/IP network protocol entity

'idns' preference

...

'port' preference

"Home" set entity

AppleTalk global protocol entity

"AirPort" TCP/IP network protocol entity

DNS configuration
user-visible name of this port

"LocalTalk for Printer" AppleTalk network protocol entity

TCP/IP global protocol entity

"Work" set entity

AppleTalk global protocol entity

"Work/DHCP" TCP/IP network protocol entity

"Company Ethernet" AppleTalk network protocol entity

TCP/IP global protocol entity

Active

Active

'opts' preference

...

'opts' preference

...

'atfp' preference

...

'port' preference

'aftp' preference

...

'port' preference

'idns' preference

...

'port' preference

AppleTalk global protocol entity

"AirPort" TCP/IP network protocol entity

"LocalTalk for Printer" AppleTalk network protocol entity

TCP/IP global protocol entity

AppleTalk global protocol entity

"Work/DHCP" TCP/IP network protocol entity

"Company Ethernet" AppleTalk network protocol entity

TCP/IP global protocol entity

"Work/DHCP" TCP/IP network protocol entity

'idns' preference

...

'port' preference
DNS configuration
user-visible name of this port

'idns' preference

...

'port' preference

C H A P T E R 1

About Network Setup

Network Setup Database Fundamentals

19

For simplicity, this example assumes a computer with two places of operation,
home and work, and two protocol stacks, TCP/IP and AppleTalk. Thus, there
are four network connection entities:

�

“AirPort,” a TCP/IP network connection entity that configures a TCP/IP
interface to use an AirPort card to access an AirPort Base Station at home.

�

“LocalTalk for Printer,” an AppleTalk network connection entity that
configures an AppleTalk interface to use LocalTalk over the Printer port, to
talk to a LocalTalk printer at home.

�

“Work/DHCP,” a TCP/IP network connection entity which configures a
TCP/IP interface to use DHCP over the Ethernet port.

�

“Company Ethernet,” an AppleTalk network connection entity that
configures an AppleTalk interface to use the Ethernet port in a zone that only
exists on the “Work” network.

The area also has two global protocol entities, one for TCP/IP and one for
AppleTalk. These settings do not need to change between home and work, so
there is only one of each.

Finally, the area has two set entities:

�

“Home,” which references the two global protocol entities and the two home
network connection entities: “AirPort” for TCP/IP and “LocalTalk for
Printer” for AppleTalk.

�

“Work,” which references the two global protocol entities but also references
two network connection entities: “Work/DHCP” for TCP/IP and “Company
Ethernet” for AppleTalk.

The “Work” set entity is marked as active, so the network connection entities
that it references are active. When the user moves from work to home, a
program (such as the Location Manager) can simply mark the “Work” entity as
inactive and the “Home” entity as active and the network configuration will
switch accordingly.

Database Operations 1

Before reading or writing preferences, an application must open the database.
The first step is to create a

database reference

. This reference identifies the
calling application to the Network Setup library and is passed to subsequent
calls that access the database. After creating the database reference, the process
diverges for readers and writers. When an application opens the default area for

C H A P T E R 1

About Network Setup

20

Network Setup Database Fundamentals

reading, it reads the area directly. Network Setup simply notes that the area is
open for synchronization purposes (see the section “Preference Coherency”
(page 21)). For writing, the process is somewhat different.

When an application opens an area for writing, Network Setup creates a
temporary area that is an exact duplicate of the default area. It then returns the
temporary area ID to the application. The application can now change the
temporary area without affecting running network services. When the
application is done making changes, it commits the changes to the database.
Committing changes is an atomic process that overwrites the default area with
the contents of the temporary area and causes the protocol stacks to reconfigure
themselves for the new configuration.

Alternatively, the writing application can choose to abort the modifications, in
response to which Network Setup discards the temporary area and the system
continues to use the configuration in the default area.

Figure 1-6 shows this process diagrammatically.

Figure 1-6

Reading and writing the default area

Multiple applications can open the Network Setup database for reading, but
only one application at a time can open the database for writing.When an
application commits changes to the default area, Network Setup notifies each
application that has opened the database for reading that a change has
occurred, as explained in the next section, “Preference Coherency.”

Reading

Open for reading

Close for reading

Default area

Default area
being read

Default area

Open for write

Commit

Writing

Default area

Temporary area
being written

Updated default area

abort

C H A P T E R 1

About Network Setup

Legacy Issues

21

Preference Coherency 1

When an application commits changes to the default area, it is important that
applications that are reading the database be informed of those changes. For
example, an application might be displaying the DHCP client ID preference. If
another application changes this preference in the database, it is important that
the original application update its display.

Prior to Network Setup 1.0.2, the mechanism by which readers learned of
changes was somewhat primitive. When a writing application committed its
changes, Network Setup tagged each reading application’s database reference
with an error. Any subsequent calls using that database connection failed with
an error (kCfgErrDatabaseChanged). The reading application responded by
closing its database reference and opening the database again. It then read the
new preferences.

Network Setup 1.0.2 introduces a new, notifier-based mechanism for learning
about preference changes. The reading application attaches a notifier to the
database reference. When changes are committed to the database, Network
Setup calls each installed notifier to inform the reading application that a
change has occurred. The reading application should respond by re-reading any
preferences it has cached.

Legacy Issues 1

As described in the section “Network Setup Architecture” (page 11), current
versions of Network Setup automatically synchronize the legacy preferences
files with the database. This synchronization mechanism is transparent to
applications calling Network Setup, but there are two issues that you should be
aware of:

� Legacy synchronization is slow. Depending on the speed of the computer
and the number of entities, a full synchronization can take seconds. You
should do all that you can to avoid synchronizations. The best way to avoid
synchronizations is to adopt Network Setup and avoid modifying the legacy
preferences files directly.

� Legacy preferences files do not support multihoming.

C H A P T E R 1

About Network Setup

22 Legacy Issues

Given that legacy synchronization is slow and that legacy preferences files do
not support multihoming, future system software will not support legacy
synchronization.

Legacy Synchronization Algorithm 1

Network Setup synchronizes the database and the legacy preferences files at the
following times:

� When the database is opened. Network Setup checks the modification dates
of each legacy preferences file against modification dates stored in the
database. If the dates are different, Network Setup assumes that some
application has changed one or more legacy preferences files and imports
preferences from the modified files.

� When changes are committed to the database. Network Setup determines
whether the committed changes affect a legacy preferences file. If they do,
Network Setup exports the database to the legacy preferences file and
records the modification date of the legacy preferences file in the database.

The legacy import mechanism makes good use of the structure of the legacy
preferences files. Most preferences files are resource files having the following
attributes:

� A resource having a well known resource type ('cnam').

� All resources with a resource ID of a 'cnam' resource belong to that
configuration. The contents of these resources are the preferences for that
configuration.

� There is one fixed resource whose type is 'ccfg' and whose ID is 1 that
contains the resource ID of the active configuration.

� Any resources with IDs other than those used for configurations are global
preferences.

When importing a legacy preferences file, Network Setup creates an entity for
each 'cnam' resource and, for each resource with the same ID as the 'cnam'
resource, creates a preference in the entity whose preference type is the resource
ID and whose data is the resource data. If the 'ccfg' resource indicates that the
configuration is active, Network Setup places the entity in the active set.

The legacy export process is similar to the legacy import mechanism. For each
network connection entity of a particular type, Network Setup creates a 'cnam'
resource with a unique ID in the legacy file. Then, for each preference in the

C H A P T E R 1

About Network Setup

Network Setup Version History 23

entity, it creates a resource containing the preference data with the resource type
matching the preference type and the resource ID the same as the 'cnam'
resource.

Network Setup uses a number of private preferences to ensure a reliable round
trip conversion between legacy preferences files and the database. The
preference types are described in “Common Preference Types” (page 106), but
your application should not depend on their presence, their content, or their
semantics.

If you find undocumented preferences (such as a preference of type 'vers') in a
global protocol entity, do not be concerned. Network Setup itself does not
actually look at the data as it imports from and exports to legacy preferences
files.

Network Setup Version History 1

Table 1-1 summarizes the different versions of Network Setup, their features,
and their release vehicles.

There is no easy way to determine the version of Network Setup installed on a
system. The best way to test for the presence of a specific Network Setup API
enhancement is to weak link to its symbol, as described in TN 1083, “Weak
Linking to a Code Fragment Manager-based Shared Library.”

Table 1-1 Network Setup versions

Version Mac OS version New features

1.0 Mac OS 8.5

1.0.1 Not released OTCfgGetAreaName

1.0.2 Mac OS 8.6 OTCfgInstallNotifier,
OTCfgRemoveNotifier

1.1 Not released OTCfgEncrypt,
OTCfgDecrypt

1.1.1 Mac OS 9.0

C H A P T E R 1

About Network Setup

24 Network Setup Version History

Opening and Closing the Network Setup Database 25

C H A P T E R 2

Using Network Setup 2Figure 2-0
Listing 2-0
Table 2-0

This chapter explains how to use the Network Setup programming interface to
read and write network preferences. It assumes that you are familiar with basic
Network Setup concepts. If not, you should read Chapter 1, “About Network
Setup,”for important background material. This chapter concentrates on
practical examples of coding with Network Setup.

Opening and Closing the Network Setup Database 2

This section explains how your application should open the Network Setup
database for reading and writing and then discusses how to close the database
and, in the case where the database has been opened for writing, either
committing or discarding your modifications.

Opening the Database for Reading 2

The MyOpenDatabaseForReading routine shown in Listing 2-1 shows how to open
the default (or current) area in the Network Setup database for reading. It starts
by calling OTCfgOpenDatabase, which returns a database reference (of type
CfgDatabaseRef) that identifies your application’s connection to the database. It
then calls OTCfgGetCurrentArea, which returns an area identifier (of type
CfgAreaID) that identifies the default area. Finally, it opens the default area for
reading by calling OTCfgOpenArea.

The MyOpenDatabaseForReading routine returns both the database reference
(dbRef) and the default area identifier (readArea). You must know these values
in order to read preferences and eventually close the database.

C H A P T E R 2

Using Network Setup

26 Opening and Closing the Network Setup Database

Listing 2-1 Opening the database for reading

static OSStatus MyOpenDatabaseForReading(CfgDatabaseRef *dbRef,
CfgAreaID *readArea)

{
OSStatus err;
assert(dbRef != nil);
assert(readArea != nil);

err = OTCfgOpenDatabase(dbRef);
if (err == noErr) {

err = OTCfgGetCurrentArea(*dbRef, readArea);
if (err == noErr) {

err = OTCfgOpenArea(*dbRef, *readArea);
}
if (err != noErr) {

(void) OTCfgCloseDatabase(dbRef);
}

}

if (err != noErr) {
*dbRef = nil;
*readArea = kInvalidCfgAreaID;

}

return err;
}

Opening the Database for Writing 2

The MyOpenDatabaseForWriting routine shown in Listing 2-2 shows how to open
the default (or current) area in the Network Setup database for writing. The
approach is similar to that used for opening the database for reading except that
instead of calling OTCfgOpenArea to open the area for reading, the routine calls
OTCfgBeginAreaModifications to open the area for writing.

The OTCfgBeginAreaModifications function returns another area identifier that
references a writable temporary area. The MyOpenDatabaseForWriting routine
returns both the original default area identifier and the writable temporary area
identifier. You must keep both of these area identifiers because you need them
both in order to close the database. You can only make changes to the writable

C H A P T E R 2

Using Network Setup

Opening and Closing the Network Setup Database 27

area, but you can read from both the original area and the writable area to
access, respectively, the currently active network settings and your proposed
changes to the network settings.

Listing 2-2 Opening the database for writing

static OSStatus MyOpenDatabaseForWriting(CfgDatabaseRef *dbRef,
CfgAreaID *readArea,
CfgAreaID *writeArea)

{
OSStatus err;

assert(dbRef != nil);
assert(writeArea != nil);

err = OTCfgOpenDatabase(dbRef);
if (err == noErr) {

err = OTCfgGetCurrentArea(*dbRef, readArea);
if (err == noErr) {

err = OTCfgBeginAreaModifications(*dbRef, *readArea,
writeArea);

}
if (err != noErr) {

(void) OTCfgCloseDatabase(dbRef);
}

}

if (err != noErr) {
*dbRef = nil;
*readArea = kInvalidCfgAreaID;
*writeArea = kInvalidCfgAreaID;

}

return err;
}

C H A P T E R 2

Using Network Setup

28 Opening and Closing the Network Setup Database

Closing the Database After Reading 2

The MyCloseDatabaseAfterReading routine shown in Listing 2-3 shows how to
close the database after you are done reading from it. The routine simply calls
OTCfgCloseArea to close the read area and then calls OTCfgCloseDatabase to close
the database itself. This code discards error results from both of these routines
because if the database fails to close there isn’t anything your application can do
to force it to close, but it does log any errors with the standard C assert macro
so that you can detect this sort of error during testing.

Listing 2-3 Closing the database after reading

static void MyCloseDatabaseAfterReading(CfgDatabaseRef dbRef,
CfgAreaID readArea)

{
OSStatus junk;

assert(dbRef != nil);
assert(readArea != kInvalidCfgAreaID);

junk = OTCfgCloseArea(dbRef, readArea);
assert(junk == noErr);
junk = OTCfgCloseDatabase(&dbRef);
assert(junk == noErr);

}

Closing the Database After Writing 2

The MyCloseDatabaseAfterWriting routine shown in Listing 2-4 shows how to
close the database after you have finished making changes. The first three
routine parameters (the database reference, the read area identifier, and the
write area identifier) were obtained when the database was opened the
database for writing. The fourth parameter, commit, indicates whether the
changes are to be committed to the database or discarded.

If commit is true, the routine calls OTCfgCommitAreaModifications, which
overwrites the current settings in the read area with the new settings in the
write area and notifies the network protocol stacks that their preferences have
changed so that they can reconfigure themselves.

C H A P T E R 2

Using Network Setup

Opening and Closing the Network Setup Database 29

If commit is false, the routine calls OTCfgAbortAreaModifications to discard the
changes made in the writable temporary area. The read area is not changed, and
the network protocol stacks continue unaffected.

In contrast to MyCloseDatabaseAfterReading shown in Listing 2-3,
MyCloseDatabaseAfterWriting does not always throw away error results. If
OTCfgCommitAreaModifications returns an error, the
MyCloseDatabaseAfterWriting routine aborts. Your application may respond to
this by calling the same routine again, this time with commit set to false.

Listing 2-4 Closing the database after writing

static OSStatus MyCloseDatabaseAfterWriting(CfgDatabaseRef dbRef,
CfgAreaID readArea,
CfgAreaID writeArea,
Boolean commit)

{
OSStatus err;
OSStatus junk;

assert(dbRef != nil);
assert(readArea != kInvalidCfgAreaID);
assert(writeArea != kInvalidCfgAreaID);

if (commit) {
err = OTCfgCommitAreaModifications(dbRef, readArea, writeArea);

} else {
junk = OTCfgAbortAreaModifications(dbRef, readArea);
assert(junk == noErr);
err = noErr;

}
if (err == noErr) {

err = OTCfgCloseDatabase(&dbRef);
}

return err;

}

C H A P T E R 2

Using Network Setup

30 Working with Entities

Working with Entities 2

Once you have a reference to the database and an area identifier for the default
area, the next step is to look for appropriate entities within that area. Regardless
of what you want to do to an entity, you must first obtain a reference to it. An
entity reference is an opaque data structure that Network Setup uses to
uniquely identify each entity within an area.

Typically there are two ways to get the entity reference for an entity within an
area.

� You can list all of the entities of a particular class and type and display that
list to the user. For example, you might want to list all of the TCP/IP
network connection entities so that the user can choose the one to make
active. The section “Listing All Entities” (page 30) explains how to do this.

� You can find the currently active entity of a particular class and type. This is
useful when you want to read the current network settings. The section
“Finding an Active Entity” (page 34) explains how to do this.

You can also create, duplicate, rename, and delete entities. These tasks are easy
to do and are not explained in detail in this chapter. See “Network Setup
Reference” (page 57) for information about OTCfgCreateEntity (page 76),
OTCfgDuplicateEntity (page 78), OTCfgSetEntityName (page 81), and
OTCfgDeleteEntity (page 78).

Listing All Entities 2

Listing 2-5 shows the routine MyGetEntitiesList, which generates a list of all of
the entities within an area of the database. The routine’s database reference and
area identifier parameters are obtained by opening the database, as explained in
“Opening the Database for Reading” (page 25). The entityClass and entityType
parameters specify the entities to list. Some common scenarios include:

� Getting all entities of a specific class and type. Set the entityClass and
entityType parameters to that class and type. For example, to find all TCP/IP
network connection entities, supply a class of kOTCfgClassNetworkConnection
and a type of kOTCfgTypeTCPv4. See “Entity Classes and Types” (page 104) for
a list of the defined classes and types.

C H A P T E R 2

Using Network Setup

Working with Entities 31

� Getting all entities. Set entityClass and entityType to the wildcard values
kCfgClassAnyEntity and kCfgTypeAnyEntity, respectively.

The entityRefs and entityInfos parameters are handles containing an array of
elements of type CfgEntityRef and CfgEntityInfo, respectively. You must create
these handles before calling MyGetEntitiesList. You can set entityInfos to NULL
if you’re not interested in the information returned in that handle. The
MyGetEntitiesList routine resizes the handles appropriately to hold
information about each of the entities that it finds.

The MyGetEntitiesList routine calls two key Network Setup functions:
OTCfgGetEntitiesCount to count the number of entities of the specified class and
type and OTCfgGetEntitiesList to get the actual entity information. The rest of
the MyGetEntitiesList routine is just memory management.

Listing 2-5 Finding all entities of a particular class and type

static OSStatus MyGetEntitiesList(CfgDatabaseRef dbRef,
CfgAreaID area,
OSType entityClass,
OSType entityType,
CfgEntityRef **entityRefs,
CfgEntityInfo **entityInfos)

{
OSStatus err;
ItemCount entityCount;
CfgEntityRef *paramRefs;
CfgEntityInfo *paramInfos;
SInt8 sRefs;
SInt8 sInfos;

assert(dbRef != nil);
assert(area != kInvalidCfgAreaID);
assert((entityRefs != nil) || (entityInfos != nil));
assert((entityRefs == nil) || (*entityRefs != nil));
assert((entityInfos == nil) || (*entityInfos != nil));

err = OTCfgGetEntitiesCount(dbRef, area, entityClass, entityType, &entityCount);
if ((err == noErr) && (entityRefs != nil)) {

C H A P T E R 2

Using Network Setup

32 Working with Entities

SetHandleSize((Handle) entityRefs, entityCount * sizeof(CfgEntityRef));
err = MemError();

}

 if ((err == noErr) && (entityInfos != nil)) {
SetHandleSize((Handle) entityInfos, entityCount * sizeof(CfgEntityInfo));
err = MemError();

}

 if (err == noErr) {
if (entityRefs == nil) {

paramRefs = nil;
} else {

sRefs = HGetState((Handle) entityRefs); assert(MemError() ==
noErr);

HLock((Handle) entityRefs); assert(MemError() ==
noErr);

paramRefs = *entityRefs;
}
if (entityInfos == nil) {

paramInfos = nil;
} else {

sInfos = HGetState((Handle) entityInfos); assert(MemError() ==
noErr);

HLock((Handle) entityInfos); assert(MemError() ==
noErr);

paramInfos = *entityInfos;
}

err = OTCfgGetEntitiesList(dbRef, area,
entityClass, entityType,
&entityCount, paramRefs, paramInfos);

if (entityRefs != nil) {
HSetState((Handle) entityRefs, sRefs); assert(MemError() ==

noErr);
}

if (entityInfos != nil) {
HSetState((Handle) entityInfos, sInfos); assert(MemError() ==

noErr);

C H A P T E R 2

Using Network Setup

Working with Entities 33

}
}

return err;
}

The next routine, shown in Listing 2-6, opens the database for reading, gets the
entity references for all of the TCP/IP network connection entities in the default
area (using the MyGetEntitiesList routine in Listing 2-5), and prints their
user-visible names. This routine calls a routine, MyGetEntityUserVisibleName,
which hasn’t been documented yet. It is shown in Listing 2-9 in the section
“Reading and Writing Preferences” (page 34).

Listing 2-6 Printing the user-visible name for an entity

static void PrintAllTCPEntityNames(void)
{

OSStatus err;
CfgDatabaseRef dbRef;
CfgAreaID readArea;
CfgEntityRef **entityRefs;
ItemCount entityCount;
ItemCount entityIndex;
Str255 userVisibleName;

entityRefs = (CfgEntityRef **) NewHandle(0);
err = MemError();
if (err == noErr) {

err = MyOpenDatabaseForReading(&dbRef, &readArea);
if (err == noErr) {

err = MyGetEntitiesList(dbRef, readArea,
kOTCfgClassNetworkConnection, kOTCfgTypeTCPv4,
entityRefs, nil);

}
if (err == noErr) {

HLock((Handle) entityRefs); assert(MemError() ==
noErr);

printf("List of TCP/IP Network Connection Entities\n");

C H A P T E R 2

Using Network Setup

34 Reading and Writing Preferences

entityCount = GetHandleSize((Handle) entityRefs) / sizeof(CfgEntityRef);
for (entityIndex = 0; entityIndex < entityCount; entityIndex++) {

err = MyGetEntityUserVisibleName(dbRef,
&(*entityRefs)[entityIndex],
userVisibleName);

if (err == noErr) {
printf("%ld) "%#s"\n", entityIndex, userVisibleName);

}
}

}
MyCloseDatabaseAfterReading(dbRef, readArea);

}
if (entityRefs != nil) {

DisposeHandle((Handle) entityRefs); assert(MemError() ==
noErr);

}

if (err != noErr) {
printf("Failed with error %ld.\n", err);

}
}

Finding an Active Entity 2

Currently, only one entity can be active for any given network connection type.
This is not a restriction of Network Setup itself, but a limitation in the network
protocol stacks. When you look for an active entity for a particular network
protocol, you should be aware that, in the future, there may be more than one.

Because of the complexity of this algorithm and because its implementation
relies on concepts that haven’t been discussed yet, the steps and sample code
for finding an active entity are shown in “Working with Sets” (page 42), later in
this chapter.

Reading and Writing Preferences 2

Once you have an entity reference, reading and writing preferences in the entity
is a straightforward exercise. The basic steps are to open the entity, read and

C H A P T E R 2

Using Network Setup

Reading and Writing Preferences 35

write the desired preferences, and close the entity. This section describes this
process for reading variable-length and fixed-size preferences and for writing
preferences.

Reading Fixed-size Preferences 2

Many Network Setup preferences are of a fixed size. Reading a fixed size
preference is easy because you simply read it into the C structure that
corresponds to the preference. The code in Listing 2-7 shows a simple wrapper
routine you can use to read a fixed size preference from an entity within the
database. The prefType parameter controls the preference that is read. The
preference data is put in the buffer described by buffer and bufferSize.

Listing 2-7 Reading a fixed-size preference

static OSStatus MyReadFixedSizePref(CfgDatabaseRef dbRef,
const CfgEntityRef *entity,
OSType prefType,
void *buffer,
ByteCount bufferSize)

{
OSStatus err;
OSStatus err2;
CfgEntityAccessID accessID;

assert(dbRef != nil);
assert(entity != nil);
assert(buffer != nil);

err = OTCfgOpenPrefs(dbRef, entity, false, &accessID);
if (err == noErr) {

err = OTCfgGetPrefs(accessID, prefType, buffer, bufferSize);
err2 = OTCfgClosePrefs(accessID);
if (err == noErr) {

err = err2;
}

}
return err;

}

C H A P T E R 2

Using Network Setup

36 Reading and Writing Preferences

Note
The sample shown in Listing 2-7, which opens and closes
the entity before reading each preference, is implemented
in an inefficient manner for the sake of clarity. If you are
reading multiple preferences, it is more efficient to open the
entity once. Then read the preferences by calling
OTCfgGetPrefs or OTCfgSetPrefs multiple times and close
the entity when you’re done. �

A noteworthy point about reading preferences is that the OTCfgOpenPrefs
function does not take an area parameter. This is because the CfgEntityRef itself
implicitly includes the area. The significant of this point is demonstrated in the
section “Working with Sets” (page 42).

You can use the MyReadFixedSizePref routine shown in Listing 2-7 to read
specific preferences within an entity. For example, Listing 2-8 shows how to
read the DHCP lease information from a TCP/IP network connection entity.
The routine calls MyReadFixedSizePref, passing it the appropriate preference
type (kOTCfgTCPDHCPLeaseInfoPref), a pointer to the corresponding C structure,
and the size of the structure.

Listing 2-8 Reading the DHCP lease info preference in a TCP/IP network
connection entity

static OSStatus MyReadDHCPLeaseInfo(CfgDatabaseRef dbRef,
const CfgEntityRef *entity,
OTCfgTCPDHCPLeaseInfo *dhcpInfo)

{
OSStatus err;

assert(dbRef != nil);
assert(entity != nil);
assert(dhcpInfo != nil);

err = MyReadFixedSizePref(dbRef, entity, kOTCfgTCPDHCPLeaseInfoPref,
dhcpInfo, sizeof(*dhcpInfo));

return err;
}

C H A P T E R 2

Using Network Setup

Reading and Writing Preferences 37

IMPORTANT

You can derive the C structure for a specific preference type
by removing the “k” from the front of the name and the
“Pref” from the end. For example, the C structure for
kOTCfgTCPDHCPLeaseInfoPref is OTCfgTCPDHCPLeaseInfo. The
preference type constants and preference structures for all
of the Apple-defined preferences are provided in Chapter 4,
“Network Setup Protocol Structures and Data Types.” �

Reading Variable-size Preferences 2

The MyReadFixedSizePref routine shown in Listing 2-7 also works with variable
size preferences that have a known maximum size that internally includes the
size of the preference. The user-visible name preference
(kOTCfgUserVisibleNamePref), which contains a packed Pascal string, is an
example. The maximum length of a Pascal string is 256 bytes, and the first byte
denotes the length of the actual string data. Listing 2-9 shows how to use
MyReadFixedSizePref to read this type of variable size preference.

Listing 2-9 Reading the user-visible name preference

static OSStatus MyGetEntityUserVisibleName(CfgDatabaseRef dbRef,
const CfgEntityRef *entity,
Str255 name)

{
OSStatus err;

assert(dbRef != nil);
assert(entity != nil);
assert(name != nil);

err = MyReadFixedSizePref(dbRef, entity, kOTCfgUserVisibleNamePref,
name, sizeof(Str255));

return err;
}

If the variable size preference you want to read does not have a known
maximum size and does not store its size internally, you need to know how big
a buffer to allocate before you call OTCfgGetPrefs. You can get this information

C H A P T E R 2

Using Network Setup

38 Reading and Writing Preferences

by calling OTCfgGetPrefsSize before you read the preference, as shown in
Listing 2-10.

Listing 2-10 Calling OTCfgGetPrefsSize to read a variable-size preference

static OSStatus MyReadVariableSizePref(CfgDatabaseRef dbRef,
const CfgEntityRef *entity,
OSType prefType,
Handle buffer)

{
OSStatus err;
OSStatus err2;
CfgEntityAccessID accessID;
ByteCount prefSize;
SInt8 s;

assert(dbRef != nil);
assert(entity != nil);
assert(buffer != nil);

err = OTCfgOpenPrefs(dbRef, entity, false, &accessID);
if (err == noErr) {

err = OTCfgGetPrefsSize(accessID, prefType, &prefSize);
if (err == noErr) {

SetHandleSize(buffer, prefSize);
err = MemError();

}
if (err == noErr) {

s = HGetState(buffer); assert(MemError()
== noErr);

HLock(buffer); assert(MemError()
== noErr);

err = OTCfgGetPrefs(accessID, prefType, *buffer, prefSize);
HSetState(buffer, s); assert(MemError()

== noErr);
}
err2 = OTCfgClosePrefs(accessID);
if (err == noErr) {

err = err2;
}

C H A P T E R 2

Using Network Setup

Reading and Writing Preferences 39

}
return err;

}

Writing Preferences 2

Listing 2-11 shows the routine MyWritePref, which demonstrates the basic
mechanism for writing preferences. Writing a preference is similar to reading a
preference, with the following exceptions:

� When you open the entity, open the entity for writing by passing true in the
writer parameter of OTCfgOpenPrefs.

� The entity that is opened must be in a writable temporary area. Attempting
to open for writing an entity in a read-only area will result in an error.

Note
You don’t need provide the area identifier when you call
OTCfgOpenPrefs because an entity “knows” the area to
which it belongs. �

Listing 2-11 Writing a preference

static OSStatus MyWritePref(CfgDatabaseRef dbRef,
const CfgEntityRef *entity,
OSType prefType,
const void *buffer,
ByteCount bufferSize)

{
OSStatus err;
OSStatus err2;
CfgEntityAccessID accessID;

assert(dbRef != nil);
assert(entity != nil);
assert(buffer != nil);

err = OTCfgOpenPrefs(dbRef, entity, true, &accessID);
if (err == noErr) {

err = OTCfgSetPrefs(accessID, prefType, buffer, bufferSize);

C H A P T E R 2

Using Network Setup

40 Reading and Writing Preferences

err2 = OTCfgClosePrefs(accessID);
if (err == noErr) {

err = err2;
}

}
return err;

}

Note
The sample shown in Listing 2-11, which opens and closes
the entity for each preference written, is implemented in an
inefficient manner for the sake of clarity. If you are writing
multiple preferences, it is more efficient to open the entity,
write your preferences by calling OTCfgSetPrefs multiple
times, and close the entity when you’re done. �

Iterating the Preferences in an Entity 2

Network Setup provides functions for iterating all of the preferences in an
entity. You will rarely need to do this, but the code in Listing 2-12 gives an
example. The code first calls OTCfgGetPrefsTOCCount (TOC stands for “Table of
Contents”) to get a count of the number of preferences in the entity and then
calls OTCfgGetPrefsTOC to get an array of CfgPrefsHeader structures. Each
structure represents a preference in the entity, with fields for the preference’s
type and size.

Listing 2-12 Printing an entity’s table of contents

static void PrintPrefsTOC(CfgDatabaseRef dbRef, const CfgEntityRef *entity)
{

OSStatus err;
OSStatus err2;
CfgEntityAccessID accessID;
ItemCount prefsTOCCount;
ItemCount prefsTOCIndex;
CfgPrefsHeader *prefsTOC;
OSType prefType;
ByteCount prefSize;

C H A P T E R 2

Using Network Setup

Reading and Writing Preferences 41

assert(dbRef != nil);
assert(entity != nil);

prefsTOC = nil;

err = OTCfgOpenPrefs(dbRef, entity, false, &accessID);
if (err == noErr) {

err = OTCfgGetPrefsTOCCount(accessID, &prefsTOCCount);
if (err == noErr) {

prefsTOC = (CfgPrefsHeader *) NewPtr(prefsTOCCount *
sizeof(CfgPrefsHeader));

err = MemError();
}
if (err == noErr) {

err = OTCfgGetPrefsTOC(accessID, &prefsTOCCount, prefsTOC);
}
if (err == noErr) {

for (prefsTOCIndex = 0; prefsTOCIndex < prefsTOCCount; prefsTOCIndex++) {
prefType = prefsTOC[prefsTOCIndex].fType;
prefSize = prefsTOC[prefsTOCIndex].fSize;
printf("type = '%4.4s', size = %ld\n", &prefType, prefSize);

}
}

err2 = OTCfgClosePrefs(accessID);
if (err == noErr) {

err = err2;
}

}

if (prefsTOC != nil) {
DisposePtr((Ptr) prefsTOC); assert(MemError() ==

noErr);
}

if (err != noErr) {
printf("Failed with error %ld.\n", err);

}
}

C H A P T E R 2

Using Network Setup

42 Working with Sets

Working with Sets 2

The Network Setup database uses set entities to store collections of other entity
references. When network entities are grouped into sets, they can be activated
and deactivated as a group. All of the network entities in all of the sets reside in
a single area, so there are no limits on the way entities can be grouped. For
example, a single network connection entity can be referenced by multiple sets.

IMPORTANT

Sets contain entity references — not the entities
themselves. �

Figure 2-1 shows the relationship between set entities, network connection
entities, and global protocol entities.

Figure 2-1 Set entities reference other entities

Work

class 'otsc'
type 'otst'

Home

class 'otsc'
type 'otst'

Work/DHCP

class 'otnc'
type 'tcp4'

Company
Ethernet
class 'otnc'
type 'atlk'

AirPort

class 'otnc'
type 'tcp4'

LocalTalk
for Printer
class 'otnc'
type 'atlk'

TCP/IP
Globals
class 'otgl'
type 'tcp4'

AppleTalk
Globals
class 'otgl'
type 'atlk'

Network Connection Entities Global Protocol Entities

Set Entities

Default Area

C H A P T E R 2

Using Network Setup

Working with Sets 43

There are a few basic rules for set entities:

� Each set entity contains a preference, kOTCfgSetsStructPref, that has a flag
that determines whether the set is active.

� At all times, there must be one and only one active set.

� Each set entity contains a preference, kOTCfgSetsVectorPref, that includes, as
elements of an unbounded array, the entity references of all entities in the set.

� For legacy synchronization to work correctly, each set entity must contain
one and only one entity of each type of network connection and global
protocol entity. This restriction will be relaxed in future versions of Mac OS.

When you make changes to a set entity, you must follow these rules:

� If you mark a set as active, you must deactivate the previously active set.

� When you add an entity to a set entity, you must remove the first entity in
the array of the same class and type as the entity you are adding. If there is
more than one entity of the same class and type, you can safely leave the
other entities in the set entity because you are running on a system that
supports multihoming.

� When you delete an entity, you must delete its reference from all set entities,
whether they are active or not.

� You must not delete the last remaining entity of a particular class and type
from a set entity.

� Do not add a set entity reference to another set entity. Network Setup does
not support nested set entities.

Finding the Active Set Entity 2

The basic algorithm for finding the active entity of a particular class and type is:

1. Get a list of all set entities.

2. Search the list for the active set entity.

3. Get the contents of that set entity. (The contents of a set entity is a list of
entity references.)

4. Search the set’s entity references for the entity reference having the
appropriate class and type.

C H A P T E R 2

Using Network Setup

44 Working with Sets

The MyFindActiveSet routine in Listing 2-13 implements the first two steps. It
starts by getting a list of all of the set entities by calling the MyGetEntitiesList
routine (Listing 2-5). Then MyFindActiveSet iterates through all of the set
entities, reading the kOTCfgSetsStructPref preference of each set entity. That
preference maps to the CfgSetsStruct structure, which contains an fFlags
member. One bit of the fFlags member, kOTCfgSetsFlagActiveMask, indicates
whether this set entity is the active set entity. If it is, the routine breaks out of
the loop and returns the set’s entity reference to the caller.

Listing 2-13 Finding the active set entity

static OSStatus MyFindActiveSet(CfgDatabaseRef dbRef,
CfgAreaID area,
CfgEntityRef *activeSet)

{
OSStatus err;
CfgEntityRef **entityRefs;
ItemCount entityCount;
ItemCount entityIndex;
Boolean found;
CfgSetsStruct thisStruct;

assert(dbRef != nil);
assert(area != kInvalidCfgAreaID);

entityRefs = (CfgEntityRef **) NewHandle(0);
err = MemError();
if (err == noErr) {

err = MyGetEntitiesList(dbRef, area,
kOTCfgClassSetOfSettings, kOTCfgTypeSetOfSettings,
entityRefs, nil);

}

 if (err == noErr) {
HLock((Handle) entityRefs); assert(MemError() ==

noErr);
entityCount = GetHandleSize((Handle) entityRefs) / sizeof(CfgEntityRef);
found = false;
for (entityIndex = 0; entityIndex < entityCount; entityIndex++) {

err = MyReadFixedSizePref(dbRef, &(*entityRefs)[entityIndex],

C H A P T E R 2

Using Network Setup

Working with Sets 45

kOTCfgSetsStructPref,
&thisStruct, sizeof(thisStruct));

if ((err == noErr) && ((thisStruct.fFlags & kOTCfgSetsFlagActiveMask) !=
0)) {

found = true;
break;

}
if (err != noErr) {

break;
}

}
if (! found) {

err = kCfgErrEntityNotFound;
}

}
if (err == noErr) {

*activeSet = (*entityRefs)[entityIndex];
}

if (entityRefs != nil) {
DisposeHandle((Handle) entityRefs); assert(MemError() ==

noErr);
}

return err;
}

The remaining two steps for finding the set entity of a particular class and type
are implemented by the MyFindFirstActiveEntity routine, shown in Listing
2-14. It calls MyFindActiveSet (Listing 2-13) to find the entity reference of the
active set entity. The MyFindFirstActiveEntity routine then reads the
kOTCfgSetsVectorPref preference out of the active set entity. This preference is a
count field followed by an unbounded array of CfgSetsElement structures, each
of which represents an entity in the set. Because of its variable size,
MyFindFirstActiveEntity reads the preference by calling
MyReadVariableSizePref (Listing 2-10). Once it has the array of information
about entities contained in the set, MyFindFirstActiveEntity iterates over that
array looking for the first element whose class and type matches the required
class and type specified by the caller. When it finds the correct entity in the set,
MyFindFirstActiveEntity breaks out of the loop and returns the found entity
reference to the caller.

C H A P T E R 2

Using Network Setup

46 Working with Sets

Listing 2-14 Finding the active entity of a given class and type

static OSStatus MyFindFirstActiveEntity(CfgDatabaseRef dbRef,
CfgAreaID area,
OSType entityClass,
OSType entityType,
CfgEntityRef *activeEntity)

{
OSStatus err;
CfgEntityRef activeSet;
CfgSetsVector **entitiesInSet;
ItemCount entityIndex;
Boolean found;
CfgEntityInfo thisEntityInfo;

entitiesInSet = (CfgSetsVector **) NewHandle(0);
err = MemError();
if (err == noErr) {

err = MyFindActiveSet(dbRef, area, &activeSet);
}
if (err == noErr) {

err = MyReadVariableSizePref(dbRef, &activeSet, kOTCfgSetsVectorPref, (Handle)
entitiesInSet);

}
if (err == noErr) {

HLock((Handle) entitiesInSet);

found = false;
for (entityIndex = 0; entityIndex < (**entitiesInSet).fCount; entityIndex++) {

thisEntityInfo = (**entitiesInSet).fElements[entityIndex].fEntityInfo;
found = (thisEntityInfo.fClass == entityClass && thisEntityInfo.fType ==

entityType);
if (found) {

break;
}

}
if (! found) {

err = kCfgErrEntityNotFound;
}

}
if (err == noErr) {

C H A P T E R 2

Using Network Setup

Working with Sets 47

*activeEntity = (**entitiesInSet).fElements[entityIndex].fEntityRef;
OTCfgChangeEntityArea(activeEntity, area);

}

if (entitiesInSet != nil) {
DisposeHandle((Handle) entitiesInSet); assert(MemError() ==

noErr);
}
return err;

}

The code in Listing 2-15 pulls together the process of finding an active set entity
by finding the active TCP/IP set entity. It opens the database, calls
MyFindFirstActiveEntity (Listing 2-14) with kOTCfgClassNetworkConnection and
kOTCfgTypeTCPv4 as parameters, calls MyGetEntityUserVisibleName (Listing 2-9)
to get and print the entity’s user visible name, and calls
MyCloseDatabaseAfterReading (Listing 2-3) to close the database.

Listing 2-15 Finding the active TCP/IP entity

static void PrintActiveTCPEntity(void)
{

OSStatus err;
CfgDatabaseRef dbRef;
CfgAreaID readArea;
CfgEntityRef activeTCPEntity;
Str255 userVisibleName;

err = MyOpenDatabaseForReading(&dbRef, &readArea);
if (err == noErr) {

err = MyFindFirstActiveEntity(dbRef, readArea,
kOTCfgClassNetworkConnection,
kOTCfgTypeTCPv4,
&activeTCPEntity);

if (err == noErr) {
err = MyGetEntityUserVisibleName(dbRef, &activeTCPEntity, userVisibleName);

}
if (err == noErr) {

C H A P T E R 2

Using Network Setup

48 Working with Sets

printf("User-visible name of active TCP/IP entity = "%#s"\n",
userVisibleName);

}

MyCloseDatabaseAfterReading(dbRef, readArea);
}

if (err != noErr) {
printf("Failed with error %ld.\n", err);

}
}

Areas and Sets 2

When working with sets you need to be very careful about area identifiers.
There are three key points to remember:

� The area identifier is embedded in the entity reference.

� All modifications to the database are done in a temporary area.

� The temporary area is destroyed when changes are committed to the
database.

So, the area identifier that is embedded in the entity reference in a set is an area
identifier for an area that no longer exists. This can cause your software to fail.
For example, consider the following sequence:

1. Start with a database whose default area identifier is 1370.

2. A program opens the database for writing, which creates a temporary area
whose identifier is 6288.

3. The program adds an entity reference to the active set entity in the temporary
area. Because the added entity reference describes an entity in the temporary
area, its area identifier is 6288.

4. The writing program commits its changes to the database, overwriting area
1370 with the content of area 6288. The active set entity in area 1370 now
contains an entity reference whose area identifier is 6288.

5. Your program opens the database for reading. It then opens the active set
entity and reads the entity references contained therein. When it tries to use
one of those entities, the program fails because the entity’s area identifier is
6288, not 1370.

C H A P T E R 2

Using Network Setup

Protocol-specific Topics 49

The solution to this problem is very simple: assume that all entity references in
a set refer to entities that are in the same area as the set. This has two practical
consequences.

� When comparing two entity references that might have come from a set
entity, always pass kOTCfgIgnoreArea when calling OTCfgIsSameEntityRef. The
OTCfgIsSameEntityRef function will then compare the entities as if they were
in the same area.

� When opening an entity whose reference you have obtained from a set,
always call OTCfgChangeEntityArea to reset its area identifier to that of the
area in which you are working.

 Listing 2-14 demonstrates this technique.

Protocol-specific Topics 2

This section contains hints and tips for working with the Network Setup
preferences of certain protocol stacks provided by Apple.

TCP/IP Notes 2

A TCP/IP network connection entity has a class of
kOTCfgClassNetworkConnection and a type of kOTCfgTypeTCPv4. The entity must
contain the following preferences:

� kOTCfgTCPInterfacesPref, which contains the core TCP/IP configuration
information. For details, see the discussion below and
OTCfgTCPInterfacesUnpacked (page 112), OTCfgTCPInterfacesPacked
(page 114), and OTCfgTCPInterfacesPackedPart (page 114).

� kOTCfgTCPDeviceTypePref, which contains data needed by the current TCP/IP
control panel. For details, see OTCfgTCPDeviceTypePref in the section “TCP/IP
Constants and Other Data Types” (page 160).

� kOTCfgTCPRoutersListPref, which contains the list of configured routers. For
details, see OTCfgTCPRoutersList (page 119).

� kOTCfgTCPSearchListPref, which contains the strings which make up the
implicit search path for DNS. For details, see OTCfgTCPSearchList (page 120).

C H A P T E R 2

Using Network Setup

50 Protocol-specific Topics

� kOTCfgTCPDNSServersListPref, which contains the list of configured DNS
servers. For details, see OTCfgTCPDNSServersList (page 116).

� kOTCfgTCPSearchDomainsPref, which contains the list of additional domains to
be searched. For details, see OTCfgTCPSearchDomains (page 120).

� kOTCfgTCPUnloadAttrPref, which specifies how TCP/IP loads and unloads.
For details, see OTCfgTCPUnloadAttr (page 121).

� kOTCfgTCPLocksPref, which is used by the TCP/IP control panel to remember
which preferences are locked. For details, see OTCfgTCPLocks (page 116).

The only complex preference in a TCP/IP network connection entity is the
kOTCfgTCPInterfacesPref preference. The data for this preference is packed in
an unusual way that makes the preference tricky to access from C. To help solve
this problem, Network Setup declares two sets of C structures for this
preference.

� OTCfgTCPInterfacesPacked and OTCfgTCPInterfacesPackedPart help you
access the preference in its packed format.

� OTCfgTCPInterfacesUnpacked is an unpacked form of the preference that you
can use internally within your code. When you read the preference, you can
unpack it into this structure. You can then manipulate the unpacked
structure and only pack it again when you write it.

Listing 2-16 provides sample code that unpacks and packs a
kOTCfgTCPInterfacesPref preference.

Listing 2-16 Packing and unpacking the kOTCfgTCPInterfacesPref preference

static OSStatus MyPackTCPInterfacesPref(const OTCfgTCPInterfacesUnpacked *unpackedPref,
OTCfgTCPInterfacesPacked *packedPref,
ByteCount *packedPrefSize)

{
UInt8 *cursor;

assert(unpackedPref != nil);
assert(packedPref != nil);
assert(packedPrefSize != nil);

// Start the cursor at the beginning of the packed preference.

C H A P T E R 2

Using Network Setup

Protocol-specific Topics 51

cursor = (UInt8 *) packedPref;

// For each field in the unpacked pref, copy the field to the
// packed preference cursor and advance the cursor appropriately.
if (unpackedPref->fCount != 1) goto prefDataErr;
*((UInt16 *) cursor) = unpackedPref->fCount;
cursor += sizeof(UInt16);

*cursor = unpackedPref->fConfigMethod;
cursor += sizeof(UInt8);

*((InetHost *) cursor) = unpackedPref->fIPAddress;
cursor += sizeof(InetHost);
*((InetHost *) cursor) = unpackedPref->fSubnetMask;
cursor += sizeof(InetHost);

// Writing an AppleTalk zone longer than 32 characters is an error.

if (unpackedPref->fAppleTalkZone[0] > 32) goto prefDataErr;

BlockMoveData(unpackedPref->fAppleTalkZone, cursor, unpackedPref->fAppleTalkZone[0]
+ 1);

cursor += (unpackedPref->fAppleTalkZone[0] + 1);
BlockMoveData(unpackedPref->path, cursor, 36);
cursor += 36;
BlockMoveData(unpackedPref->module, cursor, 32);
cursor += 32;
*((UInt32 *) cursor) = unpackedPref->framing;
cursor += sizeof(UInt32);

// Now calculate the packed preference size by taking the difference
// between the final cursor position and the initial cursor position.
*packedPrefSize = (cursor - ((UInt8 *) packedPref));

return noErr;

prefDataErr:
return paramErr;

}

C H A P T E R 2

Using Network Setup

52 Protocol-specific Topics

static OSStatus MyUnpackTCPInterfacesPref(const OTCfgTCPInterfacesPacked *packedPref,
ByteCount packedPrefSize,
OTCfgTCPInterfacesUnpacked *unpackedPref)

{
UInt8 *cursor;

assert(packedPref != nil);
assert(unpackedPref != nil);

// Put the cursor at the beginning of the packed preference data.
cursor = (UInt8 *) packedPref;

// Walk through the packed preference data and extract the fields.
unpackedPref->fCount = *((UInt16 *) cursor);

 if (unpackedPref->fCount != 1) goto prefDataErr;
cursor += sizeof(UInt16);

unpackedPref->fConfigMethod = *cursor;
cursor += sizeof(UInt8);

// The following code accesses a long off a word.
// Network Setup is PowerPC only, and the emulated PowerPC processor handles these
// misaligned accesses.
unpackedPref->fIPAddress = *((InetHost *) cursor);
cursor += sizeof(InetHost);
unpackedPref->fSubnetMask = *((InetHost *) cursor);
cursor += sizeof(InetHost);

// fAppleTalkZone is a Str32. A longer string in the 'iitf' preference causes an
error.

if (*cursor > 32) goto prefDataErr;

BlockMoveData(cursor, unpackedPref->fAppleTalkZone, *cursor + 1);
cursor += (*cursor + 1);
BlockMoveData(cursor, unpackedPref->path, 36);
cursor += 36;
BlockMoveData(cursor, unpackedPref->module, 32);
cursor += 32;
unpackedPref->framing = *((UInt32 *) cursor);
cursor += sizeof(UInt32);

C H A P T E R 2

Using Network Setup

Protocol-specific Topics 53

// If the cursor doesn’t stop at the end of the packed preference data, a data
format error occurs.

if ((cursor - ((UInt8 *) packedPref)) != packedPrefSize) goto prefDataErr;

return noErr;

prefDataErr:
return paramErr;

}

Remote Access Notes 2

A Remote Access network connection entity has a class of
kOTCfgClassNetworkConnection and a type of kOTCfgTypeRemote and typically
contains the following preferences:

� kOTCfgRemoteConnectPref, which contains core connection preferences. For
details, see OTCfgRemoteConnect (page 127).

� kOTCfgRemoteUserPref, which contains the user name. For details, see
OTCfgRemoteUserPref in the section “Apple Remote Access Constants and
Other Data Types” (page 163).

� kOTCfgRemotePasswordPref, which contains the user’s encrypted password.
For details, see the sample code below and OTCfgRemotePassword (page 135).

� kOTCfgRemoteAddressPref, which contains the phone number to dial. For
details, see OTCfgRemoteAddressPref in the section “Apple Remote Access
Constants and Other Data Types” (page 163).

� kOTCfgRemoteDialingPref, which contains redial preferences. For details, see
OTCfgRemoteDialing (page 131).

� kOTCfgRemoteClientMiscPref, which controls the “dial on demand” feature of
IPCP. For details, see OTCfgRemoteClientMisc (page 127).

� kOTCfgRemoteIPCPPref, which contains low-level preferences for IPCP. You
typically set this preference to a default value obtained by calling
OTCfgGetDefault (page 90). For details, see OTCfgRemoteIPCP (page 132).

� kOTCfgRemoteLCPPref, which contains low-level preferences for LCP. You
typically set this preference to a default value obtained by calling
OTCfgGetDefault (page 90). For details, see OTCfgRemoteLCP (page 133).

C H A P T E R 2

Using Network Setup

54 Protocol-specific Topics

� kOTCfgRemoteLogOptionsPref, which contains the “verbose logging” option.
For details, see OTCfgRemoteLogOptions (page 135).

� kOTCfgRemoteClientLocksPref, which is used by the Remote Access control
panel to remember which preferences are locked. For details, see
OTCfgRemoteClientLocks (page 125).

To create the kOTCfgRemotePasswordPref, you must encrypt the user’s password.
The code in Listing 2-17 shows a technique for doing this.

Listing 2-17 Encrypting the user’s password

static void EncodeRemotePasswordNetworkSetup(
ConstStr255Param userName,
ConstStr255Param password,
Str255 encodedPassword)

{
BlockZero(encodedPassword, sizeof(Str255));
BlockMoveData(password + 1, encodedPassword, password[0]);

(void) OTCfgEncrypt((UInt8 *) userName,
encodedPassword,
sizeof(Str255));

}

Modem Notes 2

A Remote Access network connection entity has a class of
kOTCfgClassNetworkConnection and a type of kOTCfgTypeModem. The entity
typically contains the following preferences:

� kOTCfgModemGeneralPrefs, which contains the core modem preferences. For
details, see OTCfgModemGeneral (page 141).

� kOTCfgModemLocksPref, which is used by the Modem control panel to
remember which preferences are locked. For details, see OTCfgModemLocks
(page 143).

When creating the kOTCfgModemGeneralPrefs preference, you have to supply the
name of a serial port that is visible to Open Transport. For information about
building a list of Open Transport serial ports and their user-visible names, see

C H A P T E R 2

Using Network Setup

Notes for Third Parties 55

DTS Technote 1119 Serial Port Apocrypha available at
http://developer.apple.com/technotes/tn/tn1119.html.

Notes for Third Parties 2

This section contains miscellaneous hints and tips for third-party developers
who want to use Network Setup to store their own preferences.

Storing Third-party Preferences in Apple Entities 2

It is reasonable for third-party developers to store custom preferences inside
Apple Computer’s protocol entities. For example, a TCP/IP virtual private
network (VPN) implementation might store per-connection preferences inside
Apple Computer’s TCP/IP network connection entity. This is perfectly legal —
in fact it is encouraged — but you need to follow one important rule: The
preference type for your preference must be registered as a unique creator code
with DTS at http://developer.apple.com/dev/cftype. Registering preference
types will prevent two different developers from using the same preference
type for conflicting preferences.

Network Setup and Third-party Protocol Stacks 2

If you're writing a third-party protocol stack, you can use the Network Setup
database to store your preferences in much the same way as the Apple protocol
stacks do. There are a few important things to remember.

� It is recommended that you use the existing classes,
kOTCfgClassNetworkConnection and kOTCfgClassGlobalSettings, for your
global protocol and network connection entities.

� You should register a unique creator code with DTS at
http://developer.apple.com/dev/cftype and use it as the type for your
entities. This will ensure that your work does not conflict with Apple
Computer or other developers.

Your protocol stack configurator should call OTCfgInstallNotifier (page 94) to
install a Network Setup notifier to watch for changes to its preferences by your
control panel or by third-party software.

C H A P T E R 2

Using Network Setup

56 Notes for Third Parties

Network Setup Functions 57

C H A P T E R 3

Network Setup Reference 3Figure 3-0
Listing 3-0
Table 3-0

This chapter describes the functions, structures, and data types for calling
Network Setup. For protocol-specific preferences, see Chapter 4, “Network
Setup Protocol Structures and Data Types.”

Network Setup Functions 3

The Network Setup functions are described in these sections:

� “Opening and Closing the Network Setup Database” (page 57)

� “Managing Areas” (page 59)

� “Managing Entities” (page 72)

� “Managing Preferences” (page 83)

� “Preference Utilities” (page 92)

� “Installing and Removing a Notification Callback” (page 94)

Opening and Closing the Network Setup Database 3

Before attempting to call the Network Setup functions, you must open the
Network Setup database. Be sure to close the database when you are done. The
functions are:

� OTCfgOpenDatabase (page 58) opens the Network Setup database.

� OTCfgCloseDatabase (page 58) closes the Network Setup database.

C H A P T E R 3

Network Setup Reference

58 Network Setup Functions

OTCfgOpenDatabase 3

Opens a session with the Network Setup database.

OSStatus OTCfgOpenDatabase (CfgDatabaseRef* dbRef);

dbRef On input, a pointer to a value of type CfgDatabaseRef (page 98).
On output, dbRef is a reference to the opened database that is
passed as a parameter to other Network Setup functions.

function result A value of noErr if the database was opened. For a list of other
possible result codes, see “Result Codes” (page 110).

DISCUSSION

The OTCfgOpenDatabase function opens a session with the Network Setup
database. Your application must call OTCfgOpenDatabase successfully before it
can call any other Network Setup function.

OTCfgCloseDatabase 3

Closes the Network Setup database.

OSStatus OTCfgCloseDatabase (OTCfgDatabaseRef* dbRef);

dbRef A pointer to value of type CfgDatabaseRef (page 98) that
represents the database session you want to close.

function result A value of noErr if the database was closed. For a list of other
possible result codes, see “Result Codes” (page 110).

DISCUSSION

The OTCfgCloseDatabase function closes the database session represented by
dbRef.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 59

Note
Closing a database session automatically removes any
notification callback that has been installed for the session
represented by dbRef. �

Managing Areas 3

The following functions manage areas in the Network Setup database:

� OTCfgGetCurrentArea (page 60) obtains the default area in the database.

� OTCfgSetCurrentArea (page 61) sets the default area in the database.

� OTCfgOpenArea (page 61) opens an area in the database.

� OTCfgCloseArea (page 62) closes an area in the database.

� OTCfgBeginAreaModifications (page 63) creates a temporary area for
modifying the database.

� OTCfgCommitAreaModifications (page 64) commits changes made in a
temporary area to the database.

� OTCfgAbortAreaModifications (page 65) discards a temporary area and all
modifications made to it.

� OTCfgIsSameAreaID (page 65) determines whether two area IDs are the same.

� OTCfgGetAreaName (page 66) gets the name of an area in the database.

� OTCfgSetAreaName (page 67) sets the name of an area in the database.

� OTCfgGetAreasCount (page 68) obtains the number of areas in the database.

� OTCfgGetAreasList (page 68) obtains the area IDs and area names in the
database.

� OTCfgCreateArea (page 70) creates a new area in the database.

� OTCfgDuplicateArea (page 71) copies the contents of an area to another area.

� OTCfgDeleteArea (page 72) deletes an area in the database.

C H A P T E R 3

Network Setup Reference

60 Network Setup Functions

IMPORTANT

Areas other than the default area (also known as the
current area) do not affect any network setting, so many of
the area manipulation functions described in this section
are not commonly used. You rarely need to call
OTCfgGetAreaName, OTCfgSetAreaName, OTCfgGetAreasCount,
OTCfgGetAreasList, OTCfgCreateArea, OTCfgDuplicateArea,
or OTCfgDeleteArea. �

OTCfgGetCurrentArea 3

Obtains the default area.

OSStatus OTCfgGetCurrentArea (CfgDatabaseRef dbRef,
CfgAreaID* areaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a pointer to a value of type CfgAreaID (page 98). On
output, areaID points to the area ID of the current area.

function result A value of noErr indicates that OTCfgGetCurrentArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetCurrentArea function obtains the area ID of the default area. The
default area is sometimes referred to as the current area.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 61

OTCfgSetCurrentArea 3

Sets the default area.

OSStatus OTCfgSetCurrentArea (CfgDatabaseRef dbRef,
CfgAreaID areaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) containing the
areaID that identifies the area that is to be made active. If the
area does not exist, OTCfgSetCurrentArea returns
kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgSetCurrentArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgSetCurrentArea function makes the area ID specified by the areaID
parameter the default area. The default area is sometimes referred to as the
current area.

� W AR N I N G

Do not change the default area. If you want to modify
settings, make changes to the entities within the default
area. �

OTCfgOpenArea 3

Opens an area in the Network Setup database for reading.

OSStatus OTCfgOpenArea (CfgDatabaseRef dbRef,
CfgAreaID areaID);

C H A P T E R 3

Network Setup Reference

62 Network Setup Functions

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to be opened. If the area specified by areaID does not
exist, OTCfgOpenArea returns kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgOpenArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgOpenArea function opens the specified area in the Network Setup
database for reading.

OTCfgCloseArea 3

Closes an area in the Network Setup database.

OSStatus OTCfgCloseArea (CfgDatabaseRef dbRef,
CfgAreaID areaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to be closed. If the area specified by areaID does not
exist, OTCfgCloseArea returns kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgCloseArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgCloseArea function closes an area in the database that was previously
opened for reading by calling OTCfgOpenArea (page 61).

C H A P T E R 3

Network Setup Reference

Network Setup Functions 63

OTCfgBeginAreaModifications 3

Creates a temporary area for modifying an area.

OSStatus OTCfgBeginAreaModifications (CfgDatabaseRef dbRef,
CfgAreaID readAreaID,
CfgAreaID* writeAreaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

readAreaID On input, a value of type CfgAreaID (page 98) obtained by
calling OTCfgGetCurrentArea (page 60). If the area specified by
readAreaID does not exist, OTCfgBeginAreaModifications returns
kCfgErrAreaNotFound.

writeAreaID On input, a pointer to a value of type CfgAreaID (page 98). On
output, writeAreaID points to a new area ID that your
application should use to modify, delete, enumerate, or read
data in the area.

function result A value of noErr indicates that OTCfgBeginAreaModifications
returned successfully. For a list of other possible result codes,
see “Result Codes” (page 110).

DISCUSSION

The OTCfgBeginAreaModifications function creates a temporary area and returns
in the writeAreaID parameter an area ID for it. The area ID for the temporary
area can be passed as a parameter to subsequent calls for creating or modifying
entities in the temporary area.

If you need to read the area’s original, unmodified data, you can continue using
readAreaID to do so.

IMPORTANT

Only one program can open an area of writing at any one
time. If another program has already opened the area for
writing, OTCfgBeginAreaModifications returns
kCfgErrConfigLocked. �

C H A P T E R 3

Network Setup Reference

64 Network Setup Functions

Call OTCfgCommitAreaModifications (page 64) to write the temporary area to the
area identified by writeAreaID, dispose of the temporary area, and close the area
represented by writeAreaID, or call OTCfgAbortAreaModifications (page 65) to
close the area represented by readAreaID and discard the temporary area.

OTCfgCommitAreaModifications 3

Closes an area for writing and commits modifications.

OSStatus OTCfgCommitAreaModifications (CfgDatabaseRef dbRef,
CfgAreaID readAreaID,
CfgAreaID writeAreaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

readAreaID On input, a value of type CfgAreaID (page 98). If readAreaID does
not exist or does not match the writeAreaID referred to by
OTCfgBeginAreaModifications (page 63),
OTCfgCommitAreaModifications returns kCfgErrAreaNotFound.

writeAreaID On input, a value of type CfgAreaID (page 98) previously
obtained by calling OTCfgBeginAreaModifications (page 63). If
writeAreaID does not exist or does not match the readAreaID
passed to OTCfgBeginAreaModifications (page 63),
OTCfgCommitAreaModifications returns kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgCommitAreaModifications
returned successfully. For a list of other possible result codes,
see “Result Codes” (page 110).

DISCUSSION

The OTCfgCommitAreaModifications function writes the temporary area
represented by writeAreaID to the area represented by readAreaID and closes the
write area.

Readers of the area represented by readAreaID are informed that the database
has been modified.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 65

OTCfgAbortAreaModifications 3

Closes an area for writing without committing modifications.

OSStatus OTCfgAbortAreaModifications (CfgDatabaseRef dbRef,
CfgAreaID readAreaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

readAreaID On input, a value of type CfgAreaID (page 98) that identifies an
area that has been opened for writing. If readAreaID does not
exist or you have not called OTCfgBeginAreaModifications
(page 63) for the area represented by readAreaID,
OTCfgAbortAreaModifications returns kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgAbortAreaModifications
returned successfully. For a list of other possible result codes,
see “Result Codes” (page 110).

DISCUSSION

The OTCfgAbortAreaModifications function closes an area that was opened for
writing without writing the modifications to the area presented by readAreaID.

OTCfgIsSameAreaID 3

Compares two area IDs.

Boolean OTCfgIsSameAreaID (CfgAreaID areaID1,
CfgAreaID areaID2);

areaID1 On input, a value of type CfgAreaID (page 98) representing one
of the area IDs that is to be compared.

areaID2 On input, a value of type CfgAreaID (page 98) representing the
other area ID that is to be compared.

C H A P T E R 3

Network Setup Reference

66 Network Setup Functions

function result A Boolean value that is TRUE if the area IDs are the same and
FALSE if the area IDs are different.

DISCUSSION

The OTCfgIsSameAreaID function determines whether two area IDs represent to
the same area.

OTCfgGetAreaName 3

Obtains the user-visible name of an area.

OSStatus OTCfgGetAreaName (CfgDatabaseRef dbRef,
CfgAreaID areaID,
Str255 areaName);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area whose name is to be obtained. If the area specified by
areaID does not exist, OTCfgGetAreaName returns
kCfgErrAreaNotFound.

areaName On input, a value of type Str255. On output, areaName contains
the user-visible name of the area specified by areaID.

function result A value of noErr indicates that OTCfgGetAreaName returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetAreaName function gets the user-visible name of the specified area.

Note
The OTCfgGetAreaName function is available in Network
Setup version 1.0.1 and later. �

C H A P T E R 3

Network Setup Reference

Network Setup Functions 67

OTCfgSetAreaName 3

Sets the user-visible name of an area.

OSStatus OTCfgSetAreaName (CfgDatabaseRef dbRef,
CfgAreaID areaID,
ConstStr255Param areaName,
CfgAreaID* newAreaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area whose name is to be set. If the area specified by areaID does
not exist, OTCfgSetAreaName returns kCfgErrAreaNotFound.

areaName On input, a value of type ConstStr255Param that specifies the
name to set. If an area of the name specified by areaName already
exists, OTCfgSetAreaName returns kCfgErrAreaAlreadyExists.

newAreaID On input, a pointer to value of type CfgAreaID (page 98). On
output, newAreaID points to a new area ID that your application
should use for any subsequent calls for the area.

function result A value of noErr indicates that OTCfgSetAreaName returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgSetAreaName function changes the user-visible name of the specified
area and returns a new area ID for that area.

� W AR N I N G

Do not change the name of the default area. �

C H A P T E R 3

Network Setup Reference

68 Network Setup Functions

OTCfgGetAreasCount 3

Obtains the number of areas in the Network Setup database.

OSStatus OTCfgGetAreasCount (CfgDatabaseRef dbRef,
ItemCount* itemCount);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

itemCount On input, a pointer to value of type ItemCount. On output,
itemCount points to the number of areas in the database.

function result A value of noErr indicates that OTCfgGetAreasCount returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetAreasCount function obtains the number of areas that are currently
defined in the database. Having the number of areas allows you to call
OTCfgGetAreasList (page 68) to get the ID and name of each area.

OTCfgGetAreasList 3

Obtains the IDs and names of areas in the Network Setup database.

OSStatus OTCfgGetAreasList (CfgDatabaseRef dbRef,
ItemCount* itemCount,
CfgAreaID areaID[],
Str255 areaName[]);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

itemCount On input, a pointer to a value of type ItemCount that specifies
the number of areas for which information is requested. Call
OTCfgGetAreasCount (page 68) to determine the number of areas

C H A P T E R 3

Network Setup Reference

Network Setup Functions 69

that are available. On output, itemCount points to the number of
areas for which information was actually returned, which may
be less that expected if areas were deleted between calling
OTCfgGetAreasCount (page 68) and calling OTCfgGetAreasList.

areaID On input, an array of elements of type CfgAreaID (page 98) that
is large enough to hold the number of area IDs specified by
itemCount. On output, each array element contains an area ID. If
you don’t want to get area IDs, set areaID to NULL.

areaName On input, an array of elements of type Str255 that is large
enough to hold the number of area names specified by
itemCount. On output, each array element contains an area
name. The area name in the first element corresponds to the area
ID in the first element of the array specified by areaID, and so
on. If you don’t want to get area names, set areaName to NULL.

function result A value of noErr indicates that OTCfgGetAreasList returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetAreasList function obtains the IDs and names of areas in the
database and stores this information in two arrays: one containing area IDs and
the other containing area names. Each area ID and area name pair identifies an
area in the database.

When you allocate the arrays for the areaID and areaName parameters, be sure to
allocate enough elements to hold the number of areas returned by
OTCfgGetAreasCount (page 68). The actual number of items returned in each
array may be lower than the number returned by OTCfgGetAreasCount (page 68)
if areas have been deleted in the meantime.

C H A P T E R 3

Network Setup Reference

70 Network Setup Functions

OTCfgCreateArea 3

Creates an area in the Network Setup database.

OSStatus OTCfgCreateArea (CfgDatabaseRef dbRef,
ConstStr255Param areaName,
CfgAreaID* areaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaName On input, a value of type ConstStr255Param that specifies the
user-visible name of the area to create. If an area of the name
specified by areaName already exists, OTCfgCreateArea returns
kCfgErrAreaAlreadyExists.

areaID On input, a pointer to a value of type CfgAreaID (page 98). On
output, areaID contains the ID of the area that was created.

function result A value of noErr indicates that OTCfgCreateArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgCreateArea function creates an area of the specified name in the
database.

IMPORTANT

The OTCfgCreateArea function has almost no purpose in the
version of Network Setup described by this document. �

C H A P T E R 3

Network Setup Reference

Network Setup Functions 71

OTCfgDuplicateArea 3

Copies the contents of one area to another area.

OSStatus OTCfgDuplicateArea (CfgDatabaseRef dbRef,
CfgAreaID sourceAreaID,
CfgAreaID destAreaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

sourceAreaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to be duplicated. If the area specified by areaID does
not exist, OTCfgDuplicateArea returns kCfgErrAreaNotFound.

destAreaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to contain the duplicated area. If the area specified
by areaID does not exist, OTCfgDuplicateArea returns
kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgDuplicateArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgDuplicateArea function copies the contents of the area specified by
sourceAreaID into the area specified by destAreaID. Both areas must exist before
you call OTCfgDuplicateArea. To create an area, call OTCfgCreateArea (page 70).

IMPORTANT

The OTCfgDuplicateArea function has almost no purpose in
the version of Network Setup described by this
document. �

C H A P T E R 3

Network Setup Reference

72 Network Setup Functions

OTCfgDeleteArea 3

Deletes an area in the Network Setup database.

OSStatus OTCfgDeleteArea (CfgDatabaseRef dbRef,
CfgAreaID areaID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to be deleted. If the area specified by areaID does not
exist, OTCfgDeleteArea returns kCfgErrAreaNotFound.

function result A value of noErr indicates that OTCfgDeleteArea returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgDeleteArea function removes the specified area from the database.

IMPORTANT

The OTCfgDeleteArea function has almost no purpose in the
version of Network Setup described by this document. �

Managing Entities 3

Use the following functions to create, modify, and delete entities within an area:

� OTCfgGetEntitiesCount (page 73) obtains the number of entities in an area.

� OTCfgGetEntitiesList (page 74) obtains a list of entities in an area.

� OTCfgIsSameEntityRef (page 76) determines whether two entity references are
the same.

� OTCfgCreateEntity (page 76) creates an entity in an area.

� OTCfgDeleteEntity (page 78) deletes an entity from an area.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 73

� OTCfgDuplicateEntity (page 78) copies the contents of one entity to another
entity.

� OTCfgGetEntityLogicalName (page 79) gets the name of an entity.

� OTCfgGetEntityName (page 80) gets the name of an entity.

� OTCfgSetEntityName (page 81) sets the name of an entity in an area.

� OTCfgGetEntityArea (page 82) gets the area ID of an entity.

� OTCfgChangeEntityArea (page 82) changes an entity’s area.

OTCfgGetEntitiesCount 3

Obtains the number of entities of a specified class and type in an area.

OSStatus OTCfgGetEntitiesCount (CfgDatabaseRef dbRef,
CfgAreaID areaID,
CfgEntityClass entityClass,
CfgEntityType entityType,
ItemCount* itemCount);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to be searched. If the area specified by areaID does
not exist, OTCfgGetEntitiesCount returns the error
kCfgErrAreaNotFound.

entityClass On input, a value of type CfgEntityClass that specifies the class
that is to be matched. To specify all classes, set entityClass to
kCfgClassAnyEntity. For a list of possible classes, see “Entity
Classes and Types” (page 104).

entityType On input, a value of type CfgEntityType that specifies the type
that is to be matched. To specify all types, set entityType to
kCfgTypeAnyEntity. For a list of possible types, see “Entity
Classes and Types” (page 104).

C H A P T E R 3

Network Setup Reference

74 Network Setup Functions

itemCount On input, a pointer to a value of type ItemCount. On output,
itemCount contains the number of entities that matched the
specified class and type.

function result A value of noErr indicates that OTCfgGetEntitiesCount returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetEntitiesCount function obtains the number of entities of the
specified class and type in the specified area. With the number of entities, you
can call OTCfgGetEntitiesList (page 74) to get the list of entities in the area.

OTCfgGetEntitiesList 3

Obtains information about entities in an area.

OSStatus OTCfgGetEntitiesList (CfgDatabaseRef dbRef,
CfgAreaID areaID,
CfgEntityClass entityClass,
CfgEntityType entityType,
ItemCount* itemCount,
CfgEntityRef entityRef[],
CfgEntityInfo entityInfo[]);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area that is to be searched. If the area specified by areaID does
not exist, OTCfgGetEntitiesCount returns the error
kCfgErrAreaNotFound.

entityClass On input, a value of type CfgEntityClass that specifies the class
that is to be matched. To specify all classes, set entityClass to
kCfgClassAnyEntity. For a list of possible classes, see “Entity
Classes and Types” (page 104).

C H A P T E R 3

Network Setup Reference

Network Setup Functions 75

entityType On input, a value of type CfgEntityType that specifies the type
that is to be matched. To specify all types, set entityType to
kCfgTypeAnyEntity. For a list of possible types, see “Entity
Classes and Types” (page 104).

itemCount On input, a pointer to a value of type ItemCount that specifies
the number of entities to list. Call OTCfgGetEntitiesCount
(page 73) to get the current number of entities in the area
represented by areaID. On output, itemCount points to the
number of entities for which information was actually obtained.

entityRef On input, an array of elements of type CfgEntityRef (page 99)
that is large enough to hold the number of entity references
specified by itemCount, or NULL if you do not want to receive
entity references. If not NULL on input, each element of the
entityRef array corresponds to an element of the entityInfo
array on output.

entityInfo On input, an array of CfgEntityInfo (page 99) structures that is
large enough to hold the number of CfgEntityInfo structures
specified by itemCount, or NULL if you do not want to receive
CfgEntityInfo structures.

function result A value of noErr indicates that OTCfgGetEntitiesList returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetEntitiesList function obtains an array of entity references, each of
which represents an entity in the specified area, and an array of entity
information structures, each of which contains information about its respective
entity. The information includes the entity’s class, type, user-visible name, and
icon.

You can use the entity reference to call other Network Setup functions, such as
OTCfgOpenPrefs (page 84).

C H A P T E R 3

Network Setup Reference

76 Network Setup Functions

OTCfgIsSameEntityRef 3

Compares two entity references.

Boolean OTCfgIsSameEntityRef (const CfgEntityRef* entityRef1,
const CfgEntityRef* entityRef2,
Boolean ignoreArea);

entityRef1 On input, a pointer to a value of type CfgEntityRef (page 99) for
one of the entity references that is to be compared.

entityRef2 On input, a pointer to a value of type CfgEntityRef (page 99) for
the second entity reference that is to be compared.

ignoreArea On input, a Boolean value. If ignoreArea is kCfgIgnoreArea,
OTCfgIsSameEntityRef ignores the area ID when comparing
entityRef1 and entityRef2. If ignoreArea is kCfgDontIgnoreArea,
OTCfgIsSameEntityRef does not ignore the area ID when
comparing entityRef1 and entityRef2.

function result TRUE if the entity references represent the same entity; FALSE if
the entity references represent different entities.

DISCUSSION

The OTCfgIsSameEntityRef function determines whether two entity references
represent the same area. For a discussion of the circumstances in which calling
OTCfgIsSameEntityRef is particularly useful, see “Areas and Sets” (page 48).

OTCfgCreateEntity 3

Creates an entity in an area.

OSStatus OTCfgCreateEntity (CfgDatabaseRef dbRef,
CfgAreaID areaID,
CfgEntityInfo* entityInfo,
CfgEntityRef* entityRef);

C H A P T E R 3

Network Setup Reference

Network Setup Functions 77

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

areaID On input, a value of type CfgAreaID (page 98) that identifies the
area in which the entity is to be created. If the area specified by
areaID is not writable, OTCfgCreateEntity returns the error
kCfgErrLocked. If the area specified by areaID does not exist,
OTCfgCreateEntity returns the error kCfgErrAreaNotFound.

entityInfo On input, a pointer to a CfgEntityInfo (page 99) structure that
specifies the class, type, user-visible name, and icon for the
entity that is to be created. If an entity of the specified name
already exists, OTCfgCreateEntity returns the error
kCfgErrEntityAlreadyExists.

entityRef On input, a pointer to a value of type CfgEntityRef (page 99).
On output, entityRef points to an entity reference for the
created reference.

function result A value of noErr indicates that OTCfgCreateEntity returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgCreateEntity function creates an entity in the area specified by areaID
with the class, type, user-visible name, and icon specified by the entityInfo
parameter.

The area represented by areaID must have been opened by calling
OTCfgBeginAreaModifications (page 63).

The OTCfgCreateEntity function returns a reference to the created entity that can
be passed as a parameter to other Network Setup functions, such as
OTCfgOpenPrefs (page 84).

C H A P T E R 3

Network Setup Reference

78 Network Setup Functions

OTCfgDeleteEntity 3

Deletes the specified entity.

OSStatus OTCfgDeleteEntity (CfgDatabaseRef dbRef,
const CfgEntityRef* entityRef);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
representing the entity that is to be deleted. If entityRef
represents an entity that does not reside in an area that is open
for writing, OTCfgDeleteEntity returns the error
kCfgErrAreaNotOpen or kCfgErrLocked. If the entity represented
by entityRef does not exist, OTCfgDeleteEntry returns the error
kCfgErrEntityNotFound.

function result A value of noErr indicates that OTCfgDeleteEntity returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgDeleteEntity function deletes the specified entity.

OTCfgDuplicateEntity 3

Copies the contents of one entity to another entity.

OSStatus OTCfgDuplicateEntity (CfgDatabaseRef dbRef,
const CfgEntityRef* entityRef,
const CfgEntityRef* newEntityRef);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

C H A P T E R 3

Network Setup Reference

Network Setup Functions 79

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that identifies the entity reference that is to be duplicated. If the
entity represented by entityRef does not exist,
OTCfgDuplicateEntry returns the error kCfgErrEntityNotFound.

newEntityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that identifies the entity that is to be overwritten by the contents
of entityRef. If entityRef represents an entity that does not
reside in an area that is open for writing, OTCfgDuplicateEntity
returns the error kCfgErrAreaNotOpen or kCfgErrLocked.

function result A value of noErr indicates that OTCfgDuplicateEntity returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgDuplicateEntity function copies the contents of the entity specified by
entityRef to the entity specified by newEntityRef. Any data stored in
newEntityRef before OTCfgDuplicateEntity is called is overwritten by the
contents of entityRef when OTCfgDuplicateEntity returns.

OTCfgGetEntityLogicalName 3

Obtains the user-visible name of an entity.

OSStatus OTCfgGetEntityLogicalName(CfgDatabaseRef dbRef,
const CfgEntityRef *entityRef,
Str255 entityName);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that identifies the entity whose name is to be obtained. To obtain
the reference for an entity, call OTCfgGetEntitiesList (page 74).

entityName On input, a value of type Str255. On output, entityName contains
the user-visible name of the entity represented by entityRef.

C H A P T E R 3

Network Setup Reference

80 Network Setup Functions

function result A value of noErr indicates that OTCfgGetEntityLogicalName
returned successfully. For a list of other possible result codes,
see “Result Codes” (page 110).

DISCUSSION

The OTCfgGetEntityLogicalName function obtains the user-visible name of the
entity represented by entityRef.

Note
The OTCfgGetEntityLogicalName function is available in
Network Setup 1.2 and later. If
OTCfgGetEntityLogicalName is not available, you can get
the user-visible name of an entity by calling OTCfgGetPrefs
(page 86) and specifying kOTCfgUserVisibleNamePref as the
preference to get. �

OTCfgGetEntityName 3

Obtains the name of an entity.

void OTCfgGetEntityName (const CfgEntityRef *entityRef,
Str255 entityName);

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that identifies the entity whose name is to be obtained. To obtain
the reference for an entity, call OTCfgGetEntitiesList (page 74).

entityName On input, a value of type Str255. On output, entityName contains
the name of the entity represented by entityRef.

function result None.

DISCUSSION

The OTCfgGetEntityName function obtains the name of the entity represented by
entityRef.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 81

� W AR N I N G

The OTCfgGetEntityName function does not return the
user-visible name of the entity. Instead, OTCfgGetEntityName
returns an internal name in entityName. To get the
user-visible name, call OTCfgGetPrefs (page 86) passing
kOTCfgUserVisibleNamePref in the prefsType parameter or
call OTCfgGetEntityLogicalName (page 79) if that function is
available. �

OTCfgSetEntityName 3

Sets the user-visible name of an entity.

OSStatus OTCfgSetEntityName (CfgDatabaseRef dbRef,
const CfgEntityRef* entityRef,
ConstStr255Param entityName,
CfgEntityRef* newEntityRef);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that represents the entity whose name is to be set. To obtain the
entity reference for an entity, call OTCfgGetEntitiesList
(page 74). If entityRef does not refer to a valid entity,
OTCfgSetEntityName returns the error kCfgEntityNotFoundErr.

entityName On input, a value of type ConstStr255Param that specifies the
new user-visible name for the entity.

newEntityRef On input, a pointer to a value of type CfgEntityRef (page 99).
On output, newEntityRef points to a new entity reference that
represents the renamed entity. Your application should use
newEntityRef for future references to the renamed entity.

function result A value of noErr indicates that OTCfgSetEntityName returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

C H A P T E R 3

Network Setup Reference

82 Network Setup Functions

DISCUSSION

The OTCfgSetEntityName function sets the user-visible name of the specified
entity and returns a new entity reference for the renamed entity.

OTCfgGetEntityArea 3

Obtains the area ID of an entity.

void OTCfgGetEntityArea (const CfgEntityRef *entityRef,
CfgAreaID *areaID);

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that identifies the entity reference whose area is to be obtained.
To obtain the entity reference for an entity, call
OTCfgGetEntitiesList (page 74).

areaID On input, a pointer to a value of type CfgAreaID (page 98). On
output, areaID points to the area ID of the entity represented by
entityRef.

function result None.

DISCUSSION

The OTCfgGetEntityArea function obtains the area ID of the entity represented
by entityRef.

OTCfgChangeEntityArea 3

Changes the area of an entity.

void OTCfgChangeEntityArea (CfgEntityRef *entityRef,
CfgAreaID newAreaID);

C H A P T E R 3

Network Setup Reference

Network Setup Functions 83

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that represents the entity reference whose area is to be changed.
To obtain the entity reference for an entity, call
OTCfgGetEntitiesList (page 74) or use the entity reference
returned by a Network Setup function that creates an entity.

newAreaID On input, a value of type CfgAreaID (page 98) that specifies the
new area ID for the specified entity.

function result None.

DISCUSSION

The OTCfgChangeEntityArea function changes the area ID of the specified entity.
This function does not actually move the entity. Instead, it changes the entity
reference to point to the same entity in the area specified by newAreaID.

Managing Preferences 3

Use the following functions to manage preferences, which are stored in an
entity:

� OTCfgOpenPrefs (page 84) opens an entity so that its preferences can be
accessed.

� OTCfgClosePrefs (page 85) closes an entity.

� OTCfgGetPrefsSize (page 85) gets the size of a preference.

� OTCfgGetPrefs (page 86) gets the value of a preference.

� OTCfgSetPrefs (page 87) sets the value of a preference.

� OTCfgGetPrefsTOCCount (page 88) gets the number of preferences in an entity.

� OTCfgGetPrefsTOC (page 89) gets a list of a preferences in an entity.

� OTCfgGetDefault (page 90) gets the default value for a preference.

� OTCfgDeletePrefs (page 90) deletes a preference from an entity.

� OTCfgGetTemplate (page 91) gets a preference’s template.

C H A P T E R 3

Network Setup Reference

84 Network Setup Functions

OTCfgOpenPrefs 3

Opens an entity so that its preferences can be accessed.

OSStatus OTCCfgOpenPrefs (CfgDatabaseRef dbRef,
const CfgEntityRef* entityRef,
Boolean writer,
CfgEntityAccessID* accessID);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

entityRef On input, a pointer to a value of type CfgEntityRef (page 99)
that represents the entity whose preferences are to be read or
written. If the entity does not exist, OTCfgOpenPrefs returns the
error kCfgErrEntityNotFound.

writer On input, a Boolean value. If writer is TRUE, the entity
represented by entityRef must be in an area that was opened by
calling OTCfgBeginAreaModifications (page 63); otherwise,
OTCfgOpenPrefs returns the error kCfgErrLocked. If writer is
FALSE, the entity represented by entityRef must be in an open
area [opened by calling OTCfgBeginAreaModifications (page 63)
or OTCfgOpenArea (page 61)]; otherwise, OTCfgOpenPrefs returns
the error kCfgErrAreaNotOpen.

accessID On input, a pointer to a value of type CfgEntityAccessID
(page 100). On output, use accessID in subsequent calls to get
and set preferences.

function result A value of noErr indicates that OTCfgOpenPrefs returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgOpenPrefs function opens the specified entity so that your application
can get or set the value of the preferences the entity contains.

If the value of the writer parameter is TRUE, you can set preferences as well as
get preferences; otherwise, you can only get preferences.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 85

OTCfgClosePrefs 3

Closes an entity.

OSStatus OTCCfgClosePrefs (CfgEntityAccessID accessID);

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84), that
identifies the entity that is to be closed.

function result A value of noErr indicates that OTCfgClosePrefs returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgClosePrefs function closes the specified entity.

OTCfgGetPrefsSize 3

Gets the size of a preference.

OSStatus OTCCfgGetPrefsSize (CfgEntityAccessID accessID.
OSType prefsType,
ByteCount * length);

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84), that
identifies the entity containing the preference whose size is to be
obtained.

prefsType On input, a value of type prefsType that identifies the type of
the preference whose size is to be obtained.

length On input, a pointer to a value of type ByteCount. On output,
length contains the size in bytes of the preference specified by
prefsType.

C H A P T E R 3

Network Setup Reference

86 Network Setup Functions

function result A value of noErr indicates that OTCfgGetPrefsSize returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetPrefsSize function gets the size in bytes of the preference specified
by prefsType in the entity represented by accessID.

For variable-length preferences, you should call OTCfgGetPrefsSize to get the
size of a preference before it calls OTCfgGetPrefs (page 86) to get the value of
that preference.

OTCfgGetPrefs 3

Gets the value of a preference.

OSStatus OTCCfgGetPrefs (CfgEntityAccessID accessID.
OSType prefsType,
void* data,
ByteCount length);

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84), that
identifies the entity containing the preference whose value is to
be obtained.

prefsType On input, a value of type OSType that identifies the preference
whose value is to be obtained. See“Protocol Constants and
Other Data Types” (page 159) for protocol-specific preferences.

data On input, a pointer to the buffer into which the value of the
preference is to be placed. On output, data contains the value of
the preference specified by prefsType.

length On input, a value of type ByteCount that is the size in bytes of
the buffer pointed to by data.

function result A value of noErr indicates that OTCfgGetPrefs returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

C H A P T E R 3

Network Setup Reference

Network Setup Functions 87

DISCUSSION

The OTCfgGetPrefs function gets the value of the preference specified by
prefsType in the entity represented by accessID and stores it in data.

Before calling OTCfgGetPrefs, you may call OTCfgGetPrefsSize (page 85) to
obtain the size of the entity so that you can allocate a data parameter of the
appropriate size.

If the data parameter is too small to hold the value, OTCfgGetPrefs stores as
much of the value in data as possible and returns the error
kCFGErrDataTruncated.

OTCfgSetPrefs 3

Sets the value of a preference.

OSStatus OTCCfgSetPrefs (CfgEntityAccessID accessID.
OSType prefsType,
const void* data,
ByteCount length);

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84). The
entity in which the preference represented by accessID resides
must itself reside in an area that has been opened for writing by
calling OTCfgBeginAreaModifications (page 63).

prefsType On input, a value of type OSType that identifies the preference to
set. If a preference of the type specified by prefsType already
exists OTCfgSetPrefs overwrites the value of the preference.
Otherwise, OTCfgSetPrefs creates the new preference.

data On input, a pointer to the data that is to be set.

length On input, a value of type ByteCount that contains the length in
bytes of the data in data.

function result A value of noErr indicates that OTCfgSetPrefs returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

C H A P T E R 3

Network Setup Reference

88 Network Setup Functions

DISCUSSION

The OTCfgSetPrefs function sets the preference represented by prefsType to the
value specified by data.

The accessID parameter must have been created by calling OTCfgOpenPrefs
(page 84) with the writer parameter set to TRUE; otherwise, OTCfgSetPrefs
returns the error kCfgErrLocked.

OTCfgGetPrefsTOCCount 3

Gets the number of preferences in an entity.

OSStatus OTCfgGetPrefsTOCCount (CfgEntityAccessID accessID.
ItemCount *itemCount);

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84) that
identifies the entity whose preferences are to be counted.

itemCount On input, a pointer to a value of type ItemCount. On output,
itemCount contains the number of preferences in the entity
represented by accessID.

function result A value of noErr indicates that OTCfgGetPrefsTOCCount returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetPrefsTOCCount function gets the number of preferences in the entity
represented by accessID.

You should call OTCfgPrefsTOCCount to find out how many preferences are
present before calling OTCfgGetPrefsTOC (page 89).

C H A P T E R 3

Network Setup Reference

Network Setup Functions 89

OTCfgGetPrefsTOC 3

Gets a list of the preferences in an entity.

OSStatus OTCfgGetPrefsTOC (CfgEntityAccessID accessID.
ItemCount* itemCount,
CfgPrefsHeader prefsTOC[]);

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84) that
identifies the entity whose preferences are to be obtained.

itemCount On input, a pointer to a value of type ItemCount that specifies
the requested number of preferences. On output, itemCount
contains the number of preferences that were obtained.

prefsTOC On input, an array of CfgPrefsHeader (page 100) structures. The
prefsTOC parameter must have enough CfgPrefsHeader
structures to store all of the preferences in the entity.

function result A value of noErr indicates that OTCfgGetPrefsTOC returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetPrefsTOC function obtains information about the specified number
preferences in the entity represented by accessID and stores them in the
prefsTOC array.

Before you call OTCfgPrefsTOC, you must should find out how many preferences
are available by calling OTCfgGetPrefsTOCCount (page 88).

� W AR N I N G

Early versions of Network Setup do not determine whether
there is enough space in prefsTOC (as specified on input by
itemCount) and can write beyond the end of the array. You
should always call OTCfgGetPrefsTOCCount before calling
OTCfgGetPrefsTOC. When you call OTCfgGetPrefsTOC, set
itemCount to the value returned by OTCfgGetPrefsTOCCount
in the itemCount parameter. �

C H A P T E R 3

Network Setup Reference

90 Network Setup Functions

OTCfgGetDefault 3

Returns a handle containing the default value for a preference.

Handle OTCfgGetDefault (OSType entityType,
OSType entityClass,
OSType prefsType);

entityType On input, a value of type OSType that identifies the entity type of
the default preference that is to be obtained. For possible values,
see “Entity Classes and Types” (page 104).

entityClass On input, a value of type OSType that identifies the entity class of
the default preference that is to be obtained. For possible values,
see “Entity Classes and Types” (page 104).

prefsType On input, a value of type OSType that identifies the preference
whose default value is to be obtained.

function result A handle or NULL if no preference of the specified entity type,
class, and preference type exists, or if there is not enough
memory to obtain the handle.

DISCUSSION

The OTCfgGetDefault function returns a handle containing the default value for
a preference of the specified entity, class, and preference type.

Note
You are responsible for disposing of the handle that
OTCfgGetDefault obtains by calling the Memory Manager
function DisposeHandle. �

OTCfgDeletePrefs 3

Deletes a preference.

OSStatus OTCfgDeletePrefs (CfgEntityAccessID accessID,
OSType prefsType);

C H A P T E R 3

Network Setup Reference

Network Setup Functions 91

accessID On input, a value of type CfgEntityAccessID (page 100),
obtained by previously calling OTCfgOpenPrefs (page 84) that
identifies the entity from which a preference is to be deleted.

prefsType On input, a value of type OSType that identifies the preference
type of the preference that is to be deleted.

function result A value of noErr indicates that OTCfgDeletePrefs returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgDeletePrefs function deletes the preference of the type specified by
prefsType from the entity specified by accessID.

Note
The OTCfgDeletePrefs function is available in Network
Setup version 1.2 and later.

OTCfgGetTemplate 3

Gets the default value for a specific preference.

OSStatus OTCfgGetTemplate(CfgEntityClass entityClass,
CfgEntityType entityType,
OSType prefsType,
void *data,
ByteCount *dataSize);

entityClass On input, a value of type CfgEntityClass that specifies the class
of the preference whose default value is to be obtained.

entityType On input, a value of type CfgEntityType that specifies the type of
the preference whose default value is to be obtained.

prefsType On input, a value of type OSType that specifies the preference
type of the preference whose default value is to be obtained.

C H A P T E R 3

Network Setup Reference

92 Network Setup Functions

data On input, a pointer to the buffer into which the default value is
to be placed. On output, data points to the default value. If the
buffer is too small to hold the default value, OTCfgGetTemplate
returns as much data as possible and returns the error
kCFGErrDataTruncated. If you want to get the size of the default
value but not the default value itself, set data to NULL.

dataSize On input, a pointer to a value of type ByteCount. On output,
dataSize points to the number of bytes in the buffer pointed to
by data. On input, if data is NULL, on output, dataSize points to
the size in bytes of the default value for the specified preference.

function result A value of noErr indicates that OTCfgGetTemplate returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgGetTemplate function gets the default value for the preference
identified by the entityClass, entityType, and prefsType parameters and stores
it in the buffer described by data and dataSize.

IMPORTANT

The OTCfgGetTemplate function is available in Network
Setup version 1.2 and later. It returns the same data that
OTCfgGetDefault (page 90) returns, but the parameters have
been changed to be consistent with the parameters of other
Network Setup functions. If you rely on Network Setup 1.2
or later, call OTCfgGetTemplate. If you need to work with
earlier versions of Network Setup, you can safely continue
to call OTCfgGetDefault. �

Preference Utilities 3

Use the following functions to encrypt and decrypt preferences:

� OTCfgDecrypt (page 93) decrypts data.

� OTCfgEncrypt (page 93) encrypts data.

C H A P T E R 3

Network Setup Reference

Network Setup Functions 93

OTCfgEncrypt 3

Encrypts data.

SInt16 OTCCfgEncrypt (const UInt8 *key.
UInt8 *data,
SInt16 dataLen);

key On input, a pointer to a Pascal string containing the encryption
key. For Remote Access password, the encryption key is a user
name.

data On input, a pointer to an array of bytes that contains data that is
to be encrypted. Usually, the data is a password. On output,
data contains the encrypted password.

dataLen On input, a value of type SInt16 that specifies the number of
bytes in the data array.

function result The length of the encrypted data.

DISCUSSION

The OTCfgEncrypt function encrypts the contents of the data parameter using the
key specified by the key parameter. For sample code, see Listing 2-17 in Chapter
2, “Using Network Setup.”

Note
The OTCCfgEncrypt function is available in Network Setup
version 1.1 and later. �

OTCfgDecrypt 3

Decrypts data.

SInt16 OTCCfgDecrypt (const UInt8 *key.
UInt8 *data,
SInt16 dataLen);

C H A P T E R 3

Network Setup Reference

94 Network Setup Functions

key On input, a pointer to a Pascal string containing the encryption
key. Usually the encryption key is a user name.

data On input, a pointer to an array of bytes containing data that was
previously encrypted by OTCfgEncrypt (page 93). On output,
data contains the decrypted data.

dataLen On input, a value of type SInt16 that specifies the length of data.

function result The length in bytes of the decrypted data.

DISCUSSION

The OTCfgDecrypt function decrypts the contents of the data parameter using
the key specified by the key parameter.

Note
The OTCCfgDecrypt function is available in Network Setup
version 1.1 and later. �

Installing and Removing a Notification Callback 3

You can use the following functions to install and remove a notification
callback:

� OTCfgInstallNotifier (page 94) installs a notification callback.

� OTCfgRemoveNotifier (page 96) removes a notification callback.

OTCfgInstallNotifier 3

Installs a notification callback.

OSStatus OTCfgInstallNotifier (CfgDatabaseRef dbRef.
CfgEntityClass theClass,
CfgEntityType theType,
OTNotifyProcPtr notifier,
void* contextPtr);

C H A P T E R 3

Network Setup Reference

Network Setup Functions 95

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

theClass On input, a value of type CfgEntityClass that specifies the class
for which the notification callback is to be called. For possible
values, see the constants described in “Entity Classes and
Types” (page 104). Constants that define wildcards are valid.

theType On input, a value of type CfgEntityType that specifies the type
for which the notification callback is to be called. For possible
values, see the constants described in “Entity Classes and
Types” (page 104). Constants that define wildcards are valid.

notifier On input, a value of type OTNotifyProcPtr that points to the
notification callback that is to be installed.

contextPtr On input, a pointer to an arbitrary data type that is passed to the
notification callback when it is called.

function result A value of noErr indicates that OTCfgInstallNotifier returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110)

DISCUSSION

The OTCfgInstallNotifier function installs a notification callback that is called
when changes to preferences of the specified class and type occur. Calling
OTCfgInstallNotifier when you have already installed a notification callback
causes the current notification callback to be replaced by the new notification
callback.

Note
The OTCfgInstallNotifier function is available in Network
Setup version 1.0.2 and later. �

To remove an installed notification callback, call OTCfgRemoveNotifier (page 96).
Notification callbacks are removed automatically when the database session
represented by dbRef is closed.

C H A P T E R 3

Network Setup Reference

96 Network Setup Functions

OTCfgRemoveNotifier 3

Removes a notification callback.

OSStatus OTCfgRemoveNotifier (CfgDatabaseRef dbRef.
CfgEntityClass theClass,
CfgEntityType theType);

dbRef On input, a value of type CfgDatabaseRef (page 98) that
represents a database session previously opened by calling
OTCfgOpenDatabase (page 58).

theClass On input, a value of type CfgEntityClass specifying the class
that was specified when the notification callback was installed.

theType On input, a value of type CfgEntityType specifying the type that
was specified when the notification callback was installed.

function result A value of noErr indicates that OTCfgRemoveNotifier returned
successfully. For a list of other possible result codes, see “Result
Codes” (page 110).

DISCUSSION

The OTCfgRemoveNotifier function removes the specified notification callback
that was previously installed by OTCfgInstallNotifier (page 94).

Note
The OTCfgRemoveNotifier function is available in Network
Setup version 1.0.2 and later. �

Notification callbacks are removed automatically when the database session
represented by dbRef is closed.

Application-Defined Routines 3

This section describes the application-defined routine that you can provide:

� A notification callback routine, which is called when changes occur in the
Network Setup database.

C H A P T E R 3

Network Setup Reference

Network Setup Structures and Data Types 97

Notification Callback Routine 3

Receives notifications of changes to the Network Setup database.

typedef CALLBACK_API_C(void, OTNotifyProcPtr) (
void *contextPtr,
OTEventCode code,
OSStatus result,
void *cookie);

contextPtr A pointer to the untyped value that was specified when you
called OTCfgInstallNotifier (page 94) to install the notification
callback routine.

code A value of type OTEventCode.Your notification callback routine
should ignore callbacks when this is any value other than
kCfgDatabaseChanged.

result A notification-dependent value of type OSStatus. When the
value of code is kCfgDatabaseChanged, the value of result is
kCfgErrDatabaseChanged.

cookie Reserved.

DISCUSSION

Your notification callback routine is called at system task time (but not
necessarily in the context of your application) when a change occurs to the
database. When your notification callback routine is called, you should reread
any preferences that were previously read.

Network Setup Structures and Data Types 3

This section describes structures used by the Network Setup functions. The
structures and data types are

� CfgDatabaseRef (page 98), which refers to an open database session.

� CfgAreaID (page 98), which identifies an area.

� CfgEntityRef (page 99), which refers to an open entity.

C H A P T E R 3

Network Setup Reference

98 Network Setup Structures and Data Types

� CfgEntityInfo (page 99), which contains information about the entities in an
area.

� CfgEntityAccessID (page 100), which identifies an open preference within an
entity.

� CfgPrefsHeader (page 100), which is used to return information about the
preferences within an entity.

� CfgSetsStruct (page 101), which stores information about a set entity.

� CfgSetsElement (page 103), which represents an element in a CfgSetsVector
(page 103) structure.

� CfgSetsVector (page 103), which stores references to a set of entities.

CfgDatabaseRef 3

A value of type CfgDatabaseRef refers to an open session with the Network
Setup database.

typedef struct OpaqueCfgDatabaseRef* CfgDatabaseRef;

CfgDatabaseRef A pointer to an opaque value that identifies the open
session.

Call OTCfgOpenDatabase (page 58) to open the database and obtain a value of
type CfgDatabaseRef. Network Setup requires a value of type CfgDatabaseRef to
open an area, make changes in an area, list and create entities in an area, and to
open an entity.

A CfgDatabaseRef whose value is NULL is never a valid database reference.

CfgAreaID 3

A value of type CfgAreaID identifies an area.

typedef UInt32 CfgAreaID;

CfgAreaID An unsigned 32-bit value that uniquely identifies an area.

C H A P T E R 3

Network Setup Reference

Network Setup Structures and Data Types 99

Network Setup uses a value of type CfgAreaID to identify the area in which an
entity resides. For example, a value of type CfgAreaID is a member of the
CfgEntityRef (page 99) structure. Use the constant kInvalidCfgAreaID (page 109)
to determine whether an area ID is valid.

CfgEntityRef 3

A CfgEntityRef structure refers to a specific entity.

struct CfgEntityRef {
CfgAreaID fLoc;
UInt32 fReserved;
Str255 fID;

};
typedef struct CfgEntityRef CfgEntityRef;

Field descriptions
fLoc The area in which the entity resides.
fReserved Reserved.
fID The entity ID.
For example, OTCfgCreateEntity (page 76) returns a CfgEntityRef structure to
refer to the newly created entity, and OTCfgGetEntitiesList (page 74) returns a
CfgEntityRef for each entity in an area.

CfgEntityInfo 3

The CfgEntityInfo structure stores various attributes of an entity.

struct CfgEntityInfo {
CfgEntityClass fClass;
CfgEntityType fType;
Str255 fName;
CfgResourceLocator fIcon;

};
typedef struct CfgEntityInfo CfgEntityInfo;

C H A P T E R 3

Network Setup Reference

100 Network Setup Structures and Data Types

Field descriptions
fClass The entity’s class. See “Entity Classes and Types”

(page 104) for possible values.
fType The entity’s type. See “Entity Classes and Types” (page 104)

for possible values.
fName The entity’s user-visible name.
fIcon The entity’s custom icon. For details, see the definition of

CfgResourceLocator (page 101).
CfgEntityInfo structures are used when calling OTCfgCreateEntity (page 76)
and when calling OTCfgGetEntitiesList (page 74).

CfgEntityAccessID 3

A CfgEntityAccessID refers to an open preference.

typedef void *CfgEntityAccessID;

CfgEntityAccessID A pointer to an arbitrary data type whose value represents
an open entity

Call OTCfgOpenPrefs (page 84) to open an entity and received a value of type
CfgEntityAccessID. Pass CfgEntityAccessID as a parameter to OTCfgGetPrefsSize
(page 85) and then OTCfgGetPrefs (page 86) to get the value of a preference and
to OTCfgSetPrefs (page 87) to set its value.

A CfgEntityAccessID whose value is NULL is never a valid entity access ID.

CfgPrefsHeader 3

The CfgPrefsHeader structure is used to return information about preferences in
an entity.

struct CfgPrefsHeader {
UInt16 fSize;
UInt16 fVersion;

C H A P T E R 3

Network Setup Reference

Network Setup Structures and Data Types 101

OSType fType;
};
typedef struct CfgPrefsHeader CfgPrefsHeader;

Field descriptions
fSize The size in bytes of the preference, not including the

CfgPrefsHeader structure itself.
fVersion Always zero in the version of Network Setup described by

this document.
fType An OS type that uniquely identifies the preference within

the entity.
To get the CfgPrefsHeader structures for an entity, call OTCfgGetPrefsTOC
(page 89).

CfgResourceLocator 3

The CfgResourceLocator structure contains a file specification and a resource ID
for an entity’s custom icon.

struct CfgResourceLocator {
FSSpec fFile;
SInt16 fResID;

};

Field descriptions
fFile A file specification.
fResID A resource ID.
The CfgResourceLocator structure is a member of the CfgEntityInfo (page 99)
structure. Custom icons are currently not displayed, so you should initialize
this structure to zero for any entities that you create.

CfgSetsStruct 3

The CfgSetsStruct structure holds information about a set entity.

C H A P T E R 3

Network Setup Reference

102 Network Setup Structures and Data Types

struct CfgSetsStruct
{

UInt32 fFlags;
UInt32 fTimes[kOTCfgIndexSetsLimit];

};
typedef struct CfgSetsStruct CfgSetsStruct;

Field descriptions
fFlags Flags for this set. For possible values, see the enumeration

for the fFlags field that follows.
fTimes An array of time stamps used during legacy import and

export indexed by the enumeration for the fTimes field that
follows.

The following enumerations define bits and masks for the fFlags field:

enum {
kOTCfgSetsFlagActiveBit = 0

};

enum {
kOTCfgSetsFlagActiveMask = 0x0001

};

If the active bit is set, this set entity is the active set. The default area must
always contain exactly one active set.

The following enumeration defines values for the fTimes field:

enum {
kOTCfgIndexSetsActive = 0,
kOTCfgIndexSetsEdit,
kOTCfgIndexSetsLimit

};

Constant descriptions

kOTCfgIndexSetsActiveThis index yields the time stamp of the active legacy
preferences file.

kOTCfgIndexSetsEditSets edit index.
kOTCfgIndexSetsLimitThis value is defined to allow the declaration of the fTimes

field of the CfgSetsStruct (page 101) structure.

C H A P T E R 3

Network Setup Reference

Network Setup Structures and Data Types 103

The preference type for the CfgSetsStruct structure is kOTCfgSetsStructPref,
which is defined as 'stru'.

CfgSetsElement 3

The CfgSetsElement structure represents an element in a CfgSetsVector
structure.

struct CfgSetsElement {
CfgEntityRef fEntityRef;
CfgEntityInfo fEntityInfo;

};
typedef struct CfgSetsElement CfgSetsElement;

Field descriptions
fEntityRef An entity reference for the entity to be included in this set.
fEntityInfo A CfgEntityInfo (page 99) structure that describes the

entity referenced by fEntityRef.
The fEntityRef entity typically has an area ID that doesn’t match the area of the
set entity. See the section “Areas and Sets” (page 48) for why this happens and
how you can work around the mismatch.

CfgSetsVector 3

The CfgSetsVector structure holds references to a set of entities.

struct CfgSetsVector
{

UInt32 fCount;
CfgSetsElement fElements[1];

};
typedef struct CfgSetsVector CfgSetsVector;

Field descriptions
fCount The number of elements in the set.

C H A P T E R 3

Network Setup Reference

104 Network Setup Constants

fElements An unbounded array consisting of the number of
CfgSetsElement (page 103) structures specified by fCount.
All of the entities in this array are considered to be part of
the set.

The preference type for the CfgSetsVector structure is kOTCfgSetsVectorPref,
which is defined as 'vect'.

Network Setup Constants 3

The following sections describe the Network Setup constants:

� “Entity Classes and Types” (page 104)

� “Common Preference Types” (page 106)

Entity Classes and Types 3

Network Setup can distinguish between several classes of entities and several
types within each class. Using classes allows you to store different types of
information in the same database. Third-party developers can define additional
entity classes and types. If you define an entity class or type, it should be
unique and registered with Developer Technical Support (DTS).

The following enumeration defines constants for the classes and types for the
entities defined by Apple Computer:

enum {
kOTCfgClassNetworkConnection = 'otnc',
kOTCfgClassGlobalSettings = 'otgl',
kOTCfgClassServer = ‘otsv’,
kOTCfgTypeGeneric = 'otan',
kOTCfgTypeAppleTalk = 'atlk',
kOTCfgTypeTCPv4 = 'tcp4',
kOTCfgTypeTCPv6 = 'tcp6',
kOTCfgTypeDNS = ‘dns ‘,
kOTCfgTypeRemote = 'ara ',
kOTCfgTypeDial = 'dial',
kOTCfgTypeModem = 'modm',
kOTCfgTypeInfrared = 'infr',

C H A P T E R 3

Network Setup Reference

Network Setup Constants 105

kOTCfgClassSetOfSettings = 'otsc',
kOTCfgTypeSetOfSettings = 'otst',

};

Constant descriptions

kOTCfgClassNetworkConnection
The class code for network connection entities.

kOTCfgClassGlobalSettings
The class code global protocol entities.

kOTCfgClassServer The class code for server setting entities.
kOTCfgTypeGeneric The type code for non-specific entities.
kOTCfgTypeAppleTalkThe type code for AppleTalk entities.
kOTCfgTypeTCPv4 The type code for version 4 of the Transmission Control

Protocol/Internet Protocol (TCP/IP) entities.
kOTCfgTypeTCPv6 The type code for TCP/IP version 6 entities.
kOTCfgTypeRemote The type code for Apple Remote Access (ARA) entities.
kOTCfgTypeDial The type code for Dial Assist entities.

kOTCfgTypeModem The type code for Modem entities.
kOTCfgTypeInfrared The type code for Infrared entities.
kOTCfgClassOfSettingsThe class code for set entities.
kOTCfgSetOfSettingsThe type code for set entities.
kOTCfgTypeDNS The type code for Domain Name System (DNS) entities.

Wildcard Classes and Types 3

The following enumeration defines wildcard values for matching or not
matching entity classes and entity types:

enum {
kCfgClassAnyEntity = '****',
kCfgClassUnknownEntity = '????',
kCfgTypeAnyEntity = '****',
kCfgTypeUnknownEntity = '????'

};

C H A P T E R 3

Network Setup Reference

106 Network Setup Constants

Constant descriptions

kCfgClassAnyEntity Matches the class type for any entity. This constant is
typically used when calling OTCfgGetEntitiesCount
(page 73) and OTCfgGetEntitiesList (page 74).

kCfgClassUnknownEntityDoes not match the class type for any entity. Use this
constant as a “NULL” equivalent.

kCfgTypeAnyEntity Matches the type for any entity. This constant is typically
used when calling OTCfgGetEntitiesCount (page 73) and
OTCfgGetEntitiesList (page 74).

kCfgTypeUnknownEntityDoes not match the entity type for any entity. Use this
constant as a “NULL” equivalent.

Common Preference Types 3

This section describes preferences that are used by many different protocols. For
protocol-specific preferences, see Chapter 4, “Network Setup Protocol
Structures and Data Types.”

Per-connection Preference Types 3

The following enumeration defines per-connection preference types:

enum
{

kOTCfgUserVisibleNamePref = 'pnam',
kOTCfgVersionPref = 'cvrs',
kOTCfgPortUserVisibleNamePref = 'port',
kOTCfgProtocolUserVisibleNamePref = 'prot',
kOTCfgAdminPasswordPref = 'pwrd',
kOTCfgProtocolOptionsPref = 'opts',
kCfgFreePref = ‘free’

};

Constant descriptions

kOTCfgUserVisibleNamePref
Each connection entity has a preference of this type that
contains the user-visible name of the entity as a Pascal
string

C H A P T E R 3

Network Setup Reference

Network Setup Constants 107

kOTCfgVersionPref Some protocols store the version of the protocol in this
preference. Typically, this preference is a UInt16 whose
value is 1.

kOTCfgPortUserVisibleNamePref
Some protocols use this preference to store the user-visible
name of the port over which the protocol is running as a
Pascal string.

kOTCfgProtocoltUserVisibleNamePref
Some protocols store a user-visible description of the
protocol in this preference as a C string. For TCP/IP the
value of this preference is “tcp”. For AppleTalk, the value
of this preference is “ddp”.

kOTCfgAdminPasswordPref
This preference is not documented.

kOTCfgProtocolOptionsPref
Many protocols use this preference (a UInt32) to store
protocol-specific flags.

kCfgFreePref A dummy preference type used for free blocks in an entity.

Global Preference Types 3

The following enumeration defines global preference types:

enum
{

kOTCfgUserModePref = 'ulvl',
kOTCfgPrefWindowPositionPref = 'wpos',

};

Constant descriptions

kOTCfgUserModePref Preference type for the user mode preference for TCP/IP
and AppleTalk only.

kOTCfgPrefWindowPositionPref
Preference type for the location (in global coordinates) of
the control panel window for TCP/IP, AppleTalk, and
Infrared.

C H A P T E R 3

Network Setup Reference

108 Network Setup Constants

Set Entity Preference Types 3

The following enumeration defines preference types for set entities:

enum {
kOTCfgSetsStructPref= 'stru',
kOTCfgSetsVectorPref= 'vect',

};

Constant descriptions

kOTCfgSetsStructPrefPreference type for the CfgSetsStruct (page 101) structure.
kOTCfgSetsVectorPrefPreference type for the CfgSetsVector (page 103) structure.

Backward Compatibility Preference Types 3

The following enumeration defines per-connection backward compatibility
preference types:

enum
{

kOTCfgCompatNamePref = 'cnam',
kOTCfgCompatResourceNamePref = 'resn',

};

These preferences are used by the Network Setup backward compatibility
mechanism to ensure an accurate conversion between legacy preference files
and the Network Setup database.

Global Backward Compatibility Preference Types 3

The following enumeration defines global backward compatibility preference
types:

enum
{

kOTCfgCompatSelectedPref = 'ccfg',
kOTCfgCompatResourceIDPref = 'resi',

};

C H A P T E R 3

Network Setup Reference

Network Setup Constants 109

These preferences are used by the Network Setup backward compatibility
mechanism to ensure an accurate conversion between legacy preference files
and the Network Setup database.

OTCfgUserMode Preference 3

For most control panels that support a concept of “user mode,” the
OTCfgUserMode preference holds (or is used as a field in another preference to
hold) the current user mode as a UInt16. The exceptions are the ARA and
Modem control panels, where the user mode is stored as a UInt32.

enum unsigned short OTCfgUserMode
{

kOTCfgBasicUserMode = 1,
kOTCfgAdvancedUserMode = 2,
kOTCfgAdminUserMode = 3,

};
typedef UInt32 OTCfgUserMode32;

Constant descriptions
kOTCfgBasicUserMode

Basic user mode.
kOTCfgAdvancedUserMode

Advanced user mode.
kOTCfgAdminUserMode

Administration user mode. This mode is used by the
control panel at runtime but is never valid in a preference.
It is defined here for completeness only.

Invalid Area ID 3

The constant kInvalidCfgAreaID represents an invalid area ID.

C H A P T E R 3

Network Setup Reference

110 Result Codes

Result Codes 3

The result codes specific to Network Setup are listed here. Network Setup
functions can also return system error codes, which do not appear in this list.

kCfgErrDatabaseChanged –3290 The database has changed
since the last call. Close
and reopen the database.

kCfgErrAreaNotFound –3291 The specified area does not
exist.

kCfgErrAreaAlreadyExists –3292 The specified area already
exists.

kCfgErrAreaNotOpen –3293 The specified area is not
open.

kCfgErrConfigLocked –3294 The specified area is
locked. Try again later.

kCfgErrEntityNotFound –3295 An entity of the specified
name does not exist.

kCfgErrEntityAlreadyExists –3296 An entity of the specified
name already exists.

kCfgErrPrefsTypeNotFound –3297 A record of the specified
type does not exist.

kCfgErrDataTruncated –3298 Data was truncated
because the read buffer is
too small.

kCfgErrFileCorrupted –3299 The database is corrupted.

Protocol Structures 111

C H A P T E R 4

Network Setup
Protocol Structures and
Data Types 4

Figure 4-0
Listing 4-0
Table 4-0

This chapter describes the structures and data types for protocols provided by
Apple Computer.

Protocol Structures 4

This section describes the structures that organize the information in the
Network Setup database.

� The section “TCP/IP Structures” (page 111) describes the structures used by
TCP/IP preferences.

� The section “Apple Remote Access Structures” (page 122) describes the
structures used by Apple Remote Access (ARA) preferences.

� The section “Modem Structures” (page 141) describes the structures used by
modem preferences.

� The section “AppleTalk Structures” (page 144) describes the structures used
by AppleTalk preferences.

� The section “Infrared Structures” (page 158) describes the structures used by
Infrared preferences.

TCP/IP Structures 4

This section describes structures that store TCP/IP preferences. The structures
are

� OTCfgTCPInterfacesUnpacked (page 112) stores information about the
configured TCP/IP interfaces in unpacked format.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

112 Protocol Structures

� OTCfgTCPInterfacesPacked (page 114) stores information about the configured
TCP/IP interfaces in packed format.

� OTCfgTCPInterfacesPackedPart (page 114) is a member of the
OTCfgTCPInterfacesPacked (page 114) structure that stores port, module, and
framing information for TCP/IP interfaces in packed format.

� OTCfgTCPDHCPLeaseInfo (page 115) stores information about a DHCP lease.

� OTCfgTCPDNSServersList (page 116) stores name server information.

� OTCfgTCPLocks (page 116) stores information about whether a preference is
locked.

� OTCfgTCPRoutersList (page 119) stores an array of OTCfgTCPRoutersListEntry
(page 119) structures.

� OTCfgTCPRoutersListEntry (page 119) stores the IP address of the router that
has been configured for this interface as the default gateway.

� OTCfgTCPSearchDomains (page 120) stores the list of domains that are searched
after the implicit search domains.

� OTCfgTCPSearchList (page 120) stores DNS configuration information.

� OTCfgTCPUnloadAttr (page 121) defines values that indicate when TCP/IP is
loaded.

OTCfgTCPInterfacesUnpacked 4

The OTCfgTCPInterfacesUnpacked structure stores information about the
configured TCP/IP interfaces in unpacked format. See Listing 2-16 in Chapter 2,
“Using Network Setup,” for sample code that packs and unpacks this structure.

IMPORTANT

You must pack this structure before you write it to the
database and you must unpack this structure after you
reading it from the database. �

struct OTCfgTCPInterfacesUnpacked {
UInt16 fCount;
UInt8 pad1;
OTCfgTCPConfigMethodfConfigMethod;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 113

InetHost fIPAddress;
InetHost fSubnetMask;
Str32 fAppleTalkZone;
UInt8 pad2;
UInt8 path[kMaxPortNameSize];
UInt8 module[kMaxModuleNameSize];
UInt32 framing;

};

Field descriptions
fCount A value that is always 1 in the current versions of Open

Transport.
pad1 A pad byte. Remove this pad byte when you pack this

structure.
fConfigMethod The configuration method. For possible values, see the

section OTCfgTCPConfigMethod (page 162).
fIPAddress The IP address that has been assigned to this interface.
fSubnetMask The subnet mask.
fAppleTalkZone The AppleTalk zone for this interface. Remove trailing

bytes when you pack this structure.
pad2 A pad byte. Remove this pad byte when you pack this

structure.
path The name of the port over which this interface

communicates.
module The name of the module that controls the port over which

this interface communicates.
framing Ethernet framing options. Constants are defined in the file

“OpenTransportProviders.h,” an OpenTransport header
file.

The preference type for OTCfgTCPInterfacesUnpacked is
kOTCfgTCPInterfacesPref, which is defined as 'iitf'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

114 Protocol Structures

OTCfgTCPInterfacesPacked 4

The OTCfgTCPInterfacesPacked structure stores information about the
configured TCP/IP interfaces in packed format. See Listing 2-16 in Chapter 2,
“Using Network Setup,” for sample code that packs and unpacks this structure.

IMPORTANT

You must pack this structure before you write it to the
database and you must unpack this structure after you
reading it from the database. �

struct OTCfgTCPInterfacesPacked {
UInt16 fCount;
UInt8 fConfigMethod;
UInt8 fIPAddress[4];
UInt8 fSubnetMask[4];
UInt8 fAppleTalkZone[256];
UInt8 part[sizeof(OTCfgTCPInterfacesPackedPart)];

};

Field descriptions
fCount A value that is always 1 in the current versions of Open

Transport.
fConfigMethod The configuration method. For possible values, see

OTCfgTCPConfigMethod (page 162).
fIPAddress The IP address that has been assigned to this interface.
fSubnetMask The subnet mask.
fAppleTalkZone The AppleTalk zone for this interface. Remove trailing

bytes when you pack this structure.
part A OTCfgTCPInterfacesPackedPart (page 114) structure

containing port, module, and framing information.

OTCfgTCPInterfacesPackedPart 4

The OTCfgTCPInterfacesPackedPart structure is a member of the
OTCfgTCPInterfacesPacked (page 114) structure and stores port, module and
framing information about the configured TCP/IP interfaces.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 115

struct OTCfgTCPInterfacesPackedPart
{

UInt8 path[kMaxPortNameSize];
UInt8 module[kMaxModuleNameSize];
UInt32 framing;

};

Field descriptions
path The name of the port over which this interface

communicates.
module The name of the module that controls the port over which

this interface communicates.
framing Ethernet framing options. Constants are defined in the file

“OpenTransportProviders.h,” an Open Transport header
file.

OTCfgTCPDHCPLeaseInfo 4

The OTCfgTCPLeaseDHCPInfo structure stores information about the DHCP lease
for an interface.

struct OTCfgTCPDHCPLeaseInfo
{

InetHost ipIPAddr;
InetHost ipConfigServer;
UInt32 ipLeaseGrantTime;
UInt32 ipLeaseExpirationTime;

};

Field descriptions
ipIPAddr The IP address that has been assigned.
ipConfigServer The IP address of the DHCP server.
ipLeaseGrantTime The time at which the lease was acquired. The time is in

seconds as returned by GetDateTime.
ipLeaseExpirationTime

The time at which the lease expires. The time is in seconds
as returned by GetDateTime.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

116 Protocol Structures

The preference type for OTCfgTCPLeaseDHCPInfo is kOTCfgTCPDHCPLeaseInfoPref,
which is defined as 'dclt'.

OTCfgTCPDNSServersList 4

The OTCfgTCPDNSServersList structure stores the list of name servers that have
been configured for an interface.

struct OTCfgTCPDNSServersList
{

UInt16 fCount;
InetHost fAddressesList[1];

};

Field descriptions
fCount The number of IP addresses in the list.
fAddressesList An unbounded array containing the IP addresses of name

servers.
The preference type for OTCfgTCPDNSServersList is
kOTCfgTCPDNSServersListPref, which is defined as 'idns'.

OTCfgTCPLocks 4

The OTCfgTCPLocks structure stores information about whether a preference has
been locked by the administration mode of the control panel.

struct OTCfgTCPLocks
{

UInt8 pad1;
UInt8 lockConnectViaPopup;
UInt8 pad2;
UInt8 lockConfigurePopup;
UInt8 pad3;
UInt8 lockAppleTalkZone;
UInt8 pad4;
UInt8 lockIPAddress;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 117

UInt8 pad5;
UInt8 lockLocalDomainName;
UInt8 pad6;
UInt8 lockSubnetMask;
UInt8 pad7;
UInt8 lockRoutersList;
UInt8 pad8;
UInt8 lockDNSServersList;
UInt8 pad9;
UInt8 lockAdminDomainName;
UInt8 pad10;
UInt8 lockSearchDomains;
UInt8 pad11;
UInt8 lockUnknown;
UInt8 pad12;
UInt8 lock8023;
UInt8 pad13;
UInt8 lockDHCPClientID;
UInt8 pad14;

};

Field descriptions
pad1 Always zero.
lockConnectViaPopup

Set to TRUE to lock the Connect Via popup menu.
pad2 Always zero.
lockConfigurePopup Set to TRUE to lock the Configure popup menu.
pad3 Always zero.
lockAppleTalkZone Set to TRUE to lock the AppleTalk zone that appears when

the TCP/IP control panel is configured for MacIP.
pad4 Always zero.
lockIPAddress Set to TRUE to lock the IP address.
pad5 Always zero.
lockLocalDomainName

Set to TRUE to lock the starting domain address.
pad6 Always zero.
lockSubnetMask Set to TRUE to lock the “Subnet mask” text field.
pad7 Always zero.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

118 Protocol Structures

lockRoutersList Set to TRUE to lock the “Router address” text field.
pad8 Always zero.
lockDNSServersList Set to TRUE to lock the “Name server addr.” text field.
pad9 Always zero.
lockAdminDomainName

Set to TRUE to lock the “Ending domain name” text field.
pad10 Always zero.
lockSearchDomains Set to TRUE to lock the “Additional search domains” text

field.
pad11 Always zero.
lockUnknown Reserved.
pad12 Always zero.
lock8023 Set to TRUE to lock the Use 802.3 checkbox.
pad13 Always zero.
lockDHCPClientID Set to TRUE to lock the DHCP Client ID text field. This field

was added to the OTCfgTCPLocks structure in
Open Transport 2.0.

pad14 Always zero. This field was added to the OTCfgTCPLocks
structure in Open Transport 2.0.

Depending on the version of Open Transport, the size of the OTCfgTCPLocks
structure is 25 bytes (pre-Open Transport 2.0) or 27 bytes (Open Transport 2.0
and later). The following preference size constants are defined for this structure:

enum {
kOTCfgTCPLocksPrefPre2_0Size = 25,
kOTCfgTCPLocksPref2_0Size = 27,
kOTCfgTCPLocksPrefCurrentSize = kOTCfgTCPLocksPref2_0Size,

};

When reading or writing this preference, be sure to use the appropriate
preference type for the version of Open Transport that is being used.

The preference type for OTCfgTCPLocks is kOTCfgTCPLocksPref, which is defined
as 'stng'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 119

OTCfgTCPRoutersList 4

The OTCfgTCPRoutersList structure holds an array of OTCfgTCPRoutersListEntry
(page 119) structures.

struct OTCfgTCPRoutersList
{

UInt16 fCount;
OTCfgTCPRoutersListEntry fList[1];

};

Field descriptions
fCount The number of elements in the fList array.
fList An unbounded array consisting of a

OTCfgTCPRoutersListEntry (page 119) structures.
The preference type for this preference is kOTCfgTCPRoutersListPref, which is
defined as 'irte'.

OTCfgTCPRoutersListEntry 4

The OTCfgTCPRoutersListEntry structure is a sub-structure of the
OTCfgTCPRoutersList (page 119) structure and stores the IP address of the router
that has been configured as the default gateway for this interface.

struct OTCfgTCPRoutersListEntry
{

InetHost fToHost;
InetHost fViaHost;
UInt16 fLocal;
UInt16 fHost;

};

Field descriptions
fToHost A reserved field that you should initialize to zero.
fViaHost The IP address of the router.
fLocal A reserved field that you should initialize to zero.
fHost A reserved field that you should initialize to zero.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

120 Protocol Structures

OTCfgTCPSearchDomains 4

The OTCfgTCPSearchDomains structure stores the list of domains that are searched
after the implicit search domains.

IMPORTANT

You must pack this structure before you write it to the
database and you must unpack this structure after you
reading it from the database. �

struct OTCfgTCPSearchDomains {
UInt16 fCount;
Str255 fFirstSearchDomain;

};
typedef struct OTCfgTCPSearchDomains OTCfgTCPSearchDomains;

Field descriptions
fCount The number of domains in the list
fFirstSearchDomain The first domain to be searched. The other search domains

are packed after this fFirstSearchDomain.

Note
This preference is stored in string list format (the same
format as a ‘STR#’ resource). �

The preference type for this preference is kOTCfgTCPSearchDomainsPref, which is
defined as 'isdm'.

OTCfgTCPSearchList 4

The OTCfgTCPSearchList structure stores DNS configuration information.

IMPORTANT

You must pack this structure before you write it to the
database and you must unpack this structure after you
reading it from the database. �

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 121

struct OTCfgTCPSearchList {
UInt8 fPrimaryInterfaceIndex;
Str255 fLocalDomainName[256];
Str255 fAdmindomain[256];

};

Field descriptions
fPrimaryInterfaceIndex

A value that must be 1 in the current versions of Open
Transport.

fLocalDomainName The local domain name in Pascal string format. You must
unpack this field when you read this structure from the
database and pack this file when you write this structure to
the database.

fAdmindomain The administrative domain name in Pascal string format.
You must unpack this field when you read this structure
from the database and pack this file when you write this
structure to the database.

The preference type for this preference is kOTCfgTCPSearchListPref, which is
defined as 'ihst'.

OTCfgTCPUnloadAttr 4

The OTCfgTCPUnloadAttr enumeration defines values that indicate whether
TCP/IP is loaded on demand, always loaded, or inactive. These values are used
in the kOTCfgTCPUnloadAttrPref preference.

typedef UInt16 OTCfgTCPUnloadAttr
enum {

kOTCfgTCPActiveLoadedOnDemand = 1,
kOTCfgTCPActiveAlwaysLoaded = 2,
kOTCfgTCPInactive = 3

};

Constant descriptions

kOTCfgTCPActiveLoadedOnDemand
TCP/IP is loaded when needed and unloaded when
inactive for two minutes.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

122 Protocol Structures

kOTCfgTCPActiveAlwaysLoaded
TCP/IP is always loaded.

kOTCfgTCPInactive TCP/IP is never loaded.
The preference type for this preference is kOTCfgTCPDHCPUnloadAttrPref, which
is defined as 'unld'.

Apple Remote Access Structures 4

This section describes structures that store Apple Remote Access (ARA)
preferences. The structures are

� OTCfgRemoteAlternateAddress (page 123) stores an alternate number to dial.

� OTCfgRemoteApplication (page 123) stores information used by the Remote
Access and the Open Transport/PPP applications.

� OTCfgRemoteARAP (page 124) stores the name of the underlying modem port.

� OTCfgRemoteClientLocks (page 125) stores information about whether a
preference is locked.

� OTCfgRemoteClientMisc (page 127) stores automatic connection information.

� OTCfgRemoteConnect (page 127) stores core connection information for ARA
configurations.

� OTCfgRemoteDialAssist (page 130) stores area and country code dialing
information.

� OTCfgRemoteDialing (page 131) stores settings for outgoing ARA connections.

� OTCfgRemoteIPCP (page 132) stores information for configuring the Internet
Protocol Control Protocol (IPCP) layer of PPP.

� OTCfgRemoteLCP (page 133) stores information for configuring the Link
Control Protocol (LCP) layer of PPP.

� OTCfgRemoteLogOptions (page 135) controls the level of logging performed by
ARA.

� OTCfgRemotePassword (page 135) holds the user’s dialup password in
encrypted form

� OTCfgRemoteServer (page 136) stores an array of port configuration IDs used
to locate the configuration for a particular port on a Remote Access server.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 123

� OTCfgRemoteServerPort (page 137) stores core configuration information for
the personal server.

� OTCfgRemoteTerminal (page 138) stores information used by the PPP terminal
window.

� OTCfgRemoteUserMode (page 139) stores the current user mode and the
administration password for the control panel.

� OTCfgRemoteX25 (page 140) stores X.25 connection information.

OTCfgRemoteAlternateAddress 4

The OTCfgRemoteAlternateAddress structure stores an alternate number to dial
for outgoing ARA connections.

struct OTCfgRemoteAlternateAddress
{

UInt32 pad;
Str255 alternateAddress;

};

Field descriptions
pad Must be zero.
alternateAddress A string containing the alternate number to dial.
The preference type for this preference is kOTCfgRemoteAlternateAddressPref,
which is defined as 'cead'.

OTCfgRemoteApplication 4

The OTCfgRemoteApplication structure stores information for the Remote Access
application (or OT/PPP).

struct OTCfgRemoteApplication
{

UInt32 version;
Point fWindowPosition;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

124 Protocol Structures

UInt32 tabChoice;
OTCfgUserMode32 fUserMode;
UInt32 fSetupVisible;

};

version Must be 1 for Open Transport/PPP or 3 for ARA.
fWindowPosition Global coordinates for the application’s window position.
tabChoice Currently active tab in the Options dialog box. Use 1 for the

Redialing tab, 2 for the Connection tab, or 3 for the Protocol
tab.

fUserMode The current user mode. See the OTCfgUserMode preference
(page 109) enumeration for possible values.

fSetupVisible Set to 1 to display the set up or zero to hide it.
The preference type for this preference is kOTCfgRemoteApplicationPref, which
is defined as 'capt'.

OTCfgRemoteARAP 4

The OTCfgRemoteARAP structure stores connection information used by the ARAP
modules.

struct OTCfgRemoteARAP
{

UInt32 version;
char lowerLayerName[kMaxProviderNameSize];

};

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

lowerLayerName A C string containing the name of the underlying modem
port, which must be “Script”.

The preference type for this preference is kOTCfgRemoteARAPPref, which is
defined as 'arap'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 125

OTCfgRemoteClientLocks 4

The OTCfgRemoteClientLocks structure stores information about preferences that
have been locked by the administration mode of the control panel.

struct OTCfgRemoteClientLocks
{

UInt32 version;
UInt32 name;
UInt32 password;
UInt32 number;
UInt32 errorCheck;
UInt32 headerCompress;
UInt32 termWindow;
UInt32 reminder;
UInt32 autoConn;
UInt32 redial;
UInt32 useProtocolLock;
UInt32 useVerboseLogLock;
UInt32 regUserOrGuestLock;
UInt32 dialAssistLock;
UInt32 savePasswordLock;
UInt32 reserved[2];

};

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

name The Name field in the control panel is locked when the name
field is set to 1 and unlocked when the name field is set to
zero.

password The Password field in the control panel is locked when the
password field is set to 1 and unlocked when the password
field is set to zero.

number The Number field in the control panel is locked when the
number field is set to 1 and unlocked when the number field
is set to zero.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

126 Protocol Structures

errorCheck The “Allow error correction and compression in modem”
checkbox in the control panel is locked when the
errorCheck field is set to 1 and unlocked when the
errorCheck field is set to zero.

headerCompress The “Use TCP header compression” checkbox in the
control panel is locked when the headerCompress field is set
to 1 and unlocked when the headerCompress field is set to
zero.

termWindow The “Connect to a command-line host” checkbox in the
control panel is locked when the termWindow field is set to 1
and unlocked when the termWindow field is set to zero.

reminder The Reminders options in the control panel are locked
when the reminder field is set to 1 and unlocked when the
reminder field is set to zero.

autoConn The “Connect automatically when starting TCP/IP
applications” checkbox in the control panel is locked when
the autoConn field is set to 1 and unlocked when the
autoConn field is set to zero.

redial The Redialing tab in the control panel is locked when the
redial field is set to 1 and unlocked with the redial field is
set to zero.

useProtocolLock The “Use protocol” pop-up menu in the control panel is
locked when the useProtocolLock field is set to 1 and
unlocked when the useProtocolLock field is set to zero.

useVerboseLogLock The “Use verbose logging” checkbox in the control panel is
locked when the useVerboseLogLock field is set to 1 and
unlocked when the useVerboseLogLock field is set to zero.

regUserOrGuestLock The Register User and Guest radio buttons in the control
panel are locked when the regUserOrGuestLock field is set to
1 and unlocked when the regUserOrGuestLock field is set to
zero.

dialAssistLock The Use DialAssist checkbox in the control panel is locked
when the dialAssistLock field is set to 1 and unlocked
when the dialAssistLock field is set to zero.

savePasswordLock The “Save password” checkbox in the control panel is
locked when the savePasswordLock field is set to 1 and
unlocked when the savePasswordLock field is set to zero.

reserved Must be zero.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 127

The preference type for this preference is OTCfgRemoteClientLocks, which is
defined as 'clks'.

OTCfgRemoteClientMisc 4

The OTCfgRemoteClientMisc structure stores automatic connection information.

struct OTCfgRemoteClientMisc
{

UInt32 version;
UInt32 connectAutomatically;

};

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

connectAutomatically
Set to 1 to connect automatically when the first TCP/IP
application starts up. Set to zero to not connect
automatically.

The preference type for this preference is kOTCfgRemoteClientMiscPref, which is
defined as 'cmsc'.

OTCfgRemoteConnect 4

The OTCfgRemoteConnect structure store core connection information for ARA
configurations.

struct OTCfgRemoteConnect {
UInt32 version;
UInt32 fType;
UInt32 isGuest;
UInt32 canInteract;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

128 Protocol Structures

UInt32 showStatus;
UInt32 passwordSaved;
UInt32 flashConnectedIcon;
UInt32 issueConnectedReminders;
SInt32 reminderMinutes;
UInt32 connectManually;
UInt32 allowModemDataCompression;
OTCfgRemotePPPConnectScript chatMode;
OTCfgRemoteProtocol serialProtocolMode;
UInt32 passwordPtr;
UInt32 userNamePtr;
UInt32 addressLength;
UInt32 * addressPtr;
Str63 chatScriptName;
UInt32 chatScriptLength;
UInt32 chatScriptPtr;
UInt32 additional;
UInt32 useSecurityModule;
OSType securitySignature;
UInt32 securityDataLength;
UInt32 securityDataPtr;

};
typedef struct OTCfgRemoteConnect OTCfgRemoteConnect;

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

fType Must be zero.
isGuest Set to zero if the user is a registered user; set to 1 if the user

is to log on as Guest.
canInteract Must be 1.
showStatus Must be zero.
passwordSaved Set to 1 to use the password preference

(kOTCfgRemotePasswordPref) or set to zero to prompt the
user for a password.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 129

flashConnectedIcon Set to zero if the menu bar flashes when a disconnection
occurs; set to 1 if the menu bar does not flash when a
disconnection occurs.

issueConnectedReminders
Set to 1 to flash an icon in the menu bar to remind the user
that the connection is active; set to zero to not flash an icon.

reminderMinutes If Notification Manager reminders are enabled, the number
of minutes that are to elapse between reminders.

connectManually Must be zero.
allowModemDataCompression

Set to zero if modem data compression is not allowed; set
to 1 if modem data compression is allowed.

chatMode The chat mode. For possible values, see the
OTCfgRemotePPPConnectScript (page 166) enumeration.

serialProtocolMode The serial protocol mode (PPP, ARAP, or both). For
possible values, see the OTCfgRemoteProtocol (page 167)
enumeration.

passwordPtr Run-time use only. Initialize passwordPtr to zero, ignore it
when you read it, and preserve its value when you write it.

userNamePtr Run-time use only. Initialize userNamePtr to zero, ignore it
when you read it, and preserve its value when you write it.

addressLength The length in bytes of the telephone number stored in the
kOTCfgRemoteAddressPref.

addressPtr Run-time use only. Initialize addressPtr to zero, ignore it’s
value when you read it, and preserve it’s value when you
write it.

chatScriptName The user-visible name of the chat script for this
configuration.

chatScriptLength The length in bytes of the chat script.
chatScriptPtr Run-time use only. Initialize chatScriptPtr to zero, ignore

it’s value when you read it, and preserve it’s value when
you write it.

additionalPtr Run-time use only. Initialize additionalPtr to zero, ignore
it’s value when you read it, and preserve it’s value when
you write it.

useSecurityModule Must be zero.
securitySignature Must be zero.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

130 Protocol Structures

securityDataLength Must be zero.
securityData Must be zero.
The preference type for OTCfgRemoteConnect is kOTCfgRemoteConnectPref, which
is defined as 'conn'.

OTCfgRemoteDialAssist 4

The OTCfgRemoteDialAssist structure stores area and country code information
used by the Dial Assist facility.

struct OTCfgRemoteDialAssist {
UInt32 version;
UInt32 isAssisted;
Str31 areaCodeStr;
Str31 countryCodeStr;

};
typedef struct OTCfgRemoteDialAssist OTCfgRemoteDialAssist;;

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

isAssisted Set isAssisted to zero for no assistance (the default); set
isAssisted to 1 to use Dial Assist. When isAssisted is set to
zero, areaCodeStr and countryCodeStr are ignored.

areaCodeStr A string containing an area code that is to be dialed as part
of the sequence for making a connection.

countryCodeStr A string containing a country code that is to be dialed as
part of the sequence for making a connection.

The preference type for this preference is kOTCfgRemoteDialAssistPref, which is
defined as 'dass'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 131

OTCfgRemoteDialing 4

The OTCfgRemoteDialing structure stores settings for outgoing ARA connections.

struct OTCfgRemoteDialing {
UInt32 version;
UInt32 fType;
UInt32 additionalPtr;
OTCfgRemoteRedialMode dialMode;
UInt32 redialTries;
UInt32 redialDelay;
UInt32 pad;

};

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

fType Must be ‘dial’.
additionalPtr Must be zero.
dialMode The redial mechanism to use. For possible values, see the

OTCfgRemoteDialMode (page 168) enumeration.
redialTries The number of times to redial if a connection cannot be

made. Only valid if dialMode is not kOTCfgRemoteRedialNone.
redialDelay The number of milliseconds to wait before redialing. The

value of redialDelay is only valid if dialMode is not
kOTCfgRemoteRedialNone.

pad A pad byte whose value must be zero.
The preference type for this preference is kOTCfgRemoteDialingPref, which is
defined as 'cdia'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

132 Protocol Structures

OTCfgRemoteIPCP 4

The OTCfgRemoteIPCP structure stores information for configuring the Internet
Protocol Control Protocol (IPCP) layer of PPP. This information is also used as
part of a Remote Access server configuration. This structure is not used for
ARAP connections.

struct OTCfgRemoteIPCP {
UInt32 version;
UInt32 reserved[2];
UInt32 maxConfig;
UInt32 maxTerminate;
UInt32 maxFailureLocal;
UInt32 maxFailureRemote;
UInt32 timerPeriod;
UInt32 localIPAddress;
UInt32 remoteIPAddress;
UInt32 allowAddressNegotiation;
UInt16 idleTimerEnabled;
UInt16 compressTCPHeaders;
UInt32 idleTimerMilliseconds;

};
typedef struct OTCfgRemoteIPCP OTCfgRemoteIPCP;

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

reserved Must be zero.
maxConfig Must be 10.
maxTerminate Must be 10.
maxFailureLocal Must be 10.
maxFailureRemote Must be 10.
timerPeriod In milliseconds. Must be 10000.
localIPAddress Must be zero.
remoteIPAddress Must be zero.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 133

allowAddressNegotiation
Must be 1.

idleTimerEnabled Set idleTimerEnabled to 1 to cause a connection that has
been idle for the number of milliseconds specified by the
idletTimerMilliseconds field to be disconnected. Set
idleTimerEnabled to zero to disable the idle timer.

compressTCPHeaders Set compressTCPHeaders to 1 to allow Van Jacobsen header
compression. Set compressTCPHeaders to zero to disallow
header compression.

idleTimerMilliseconds
The number of milliseconds to wait before disconnecting a
connection that is idle.

The preference type for this preference is kOTCfgRemoteIPCPPref, which is
defined as 'ipcp'.

OTCfgRemoteLCP 4

The OTCfgRemoteLCP structure stores information for configuring the Link
Control Protocol (LCP) layer of PPP. The information in this structure is used
for PPP connections and is ignored for ARAP connections. This information is
also used as part of a Remote Access server configuration.

struct OTCfgRemoteLCP {
UInt32 version;
UInt32 reserved[2];
char lowerLayerName[36];
UInt32 maxConfig;
UInt32 maxTerminate;
UInt32 maxFailureLocal;
UInt32 maxFailureRemote;
UInt32 timerPeriod;
UInt32 echoTrigger;
UInt32 echoTimeout;
UInt32 echoRetries;
UInt32 compressionType;
UInt32 mruSize;
UInt32 upperMRULimit;
UInt32 lowerMRULimit;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

134 Protocol Structures

UInt32 txACCMap;
UInt32 rcACCMap;
UInt32 isNoLAPB;

};
typedef struct OTCfgRemoteLCP OTCfgRemoteLCP;

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

reserved Must be zero.
lowerLayerName A C string containing the name of the underlying modem

port. Must be ‘Script’.
maxConfig Must be 10.
maxTerminate Must be 10.
maxFailureLocal Must be 10.
maxFailureRemote Must be 10.
timerPeriod In milliseconds. Must be 10000.
echoTrigger In milliseconds. Must be 10000.
echoTimeout In milliseconds. Must be 10000.
echoRetries Must be 5.
compressionType Must be 3.
mruSize Must be 1500.
upperMRULimit Must be 4500.
lowerMRULimit Must be zero.
txACCMap Must be zero.
rcACCMap Must be zero.
isNoLAPB Must be zero.
The preference type for this preference is kOTCfgRemoteLCPPref, which is defined
as 'lcp'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 135

OTCfgRemoteLogOptions 4

The OTCfgRemoteLogOptions structure controls the level of logging performed by
ARA.

struct OTCfgRemoteLogOptions {
UInt32 version;
UInt32 fType;
UInt32 additionalPtr;
OTCfgRemoteLogLevel logLevel;
UInt32 reserved[4];

};
typedef struct OTCfgRemoteLogOptions OTCfgRemoteLogOptions;

version Depending how the preference was constructed, version
may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

fType Must be ‘lgop’.
additional Run-time use only. Initialize to zero. When reading, ignore

the value of additionalPtr. When writing additionalPtr,
preserve its value.

logLevel The log level. For possible values, see the
OTCfgRemoteLogLevel (page 168) enumeration.

reserved Reserved.
The preference type for this preference is kOTCfgRemoteLogOptionsPref, which is
defined as 'logo'.

OTCfgRemotePassword 4

The OTCfgRemotePassword structure holds the user’s dialup password in
encrypted form. For sample code, see Listing 2-17 in Chapter 2, “Using
Network Setup.”

C H A P T E R 4

Network Setup Protocol Structures and Data Types

136 Protocol Structures

struct OTCfgRemotePassword {
UInt8 data[256];

};
typedef struct OTCfgRemotePassword OTCfgRemotePassword;

data The encrypted password. Call OTCfgEncrypt (page 93) to
encrypt the password.

The preference type for this preference is kOTCfgRemotePasswordPref, which is
defined as 'pass'.

OTCfgRemoteServer 4

The OTCfgRemoteServer structure stores an array of port configuration IDs used
to locate the configuration for a particular port.

struct OTCfgRemoteServer {
UInt32 version;
SInt16 configCount;
SInt16 configIDs[1];

};

version Depending how the preference was constructed, version
may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

configCount The number of active Remote Access server configurations.
Must be 1 for the personal server.

configIDs Array of port configuration IDs. For the personal server,
there can be only one port configuration ID whose value is
zero.

The preference type for this preference is kOTCfgRemoteServerPref, which is
defined as 'srvr'.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 137

OTCfgRemoteServerPort 4

The OTCfgRemoteServerPort structure stores core configuration information for
the personal server.

struct OTCfgRemoteServerPort {
UInt32 version;
SInt16 configID;
Str255 password;
OTCfgRemoteAnswerMode answerMode;
Boolean limitConnectTime;
UInt8 pad;
UInt32 maxConnectSeconds;
OTCfgRemoteProtocol serialProtoFlags;
OTCfgRemoteNetworkProtocol networkProtoFlags;
OTCfgRemoteNetAccessMode netAccessMode;
Boolean requiresCCL;
char portName[64];
char serialLayerName[kMaxProviderNameSize];
InetHost localIPAddress;

};

version Depending how the preference was constructed, version
may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

configID The ID of this port configuration. The ID must match an
element of the configIDs array in the OTCfgRemoteServer
(page 136) structure. For the personal server, configID must
be zero.

password The security zone bypass password in plain text.
answerMode The answer mode. For possible values, see the

OTCfgRemoteAnswerMode (page 169) enumerations.
limitConnectTime Set to 1 to limit the length of incoming connections. Set to

zero for unlimited connection time.
pad Must be zero.
maxConnectSeconds The maximum length of a incoming connection in seconds

if limitConnectTime is set to 1. The default is 3600.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

138 Protocol Structures

serialProtoFlags Serial protocol flags. For possible values, see the
OTCfgRemoteProtocol (page 167).

networkProtoFlags Network protocol flags. For possible values, see the
OTCfgRemoteNetworkProtocol (page 169) enumeration.

netAccessMode Access mode flags. For possible values, see the
OTCfgRemoteNetAccessMode (page 170) enumeration.

requiresCCL Must be TRUE.
portName C string containing the name of the underlying port.Must

the empty string for the personal server.
serialLayerName C string containing the Open Transport name of the serial

port.
localIPAddress IP address to offer to the client.
The preference type for OTCfgRemoteServerPort is kOTCfgRemoteServerPortPref,
which is defined as 'port'.

OTCfgRemoteTerminal 4

The OTCfgRemoteTerminal structure stores information used by the PPP terminal
window.

struct OTCfgRemoteTerminal {
UInt32 fVersion;
Boolean fLocalEcho;
Boolean fNonModal;
Boolean fPowerUser;
Boolean fQuitWhenPPPStarts;
Boolean fDontAskVarStr;
Boolean fNoVarStrReplace;
Boolean fLFAfterCR;
Boolean fAskToSaveOnQuit;
Rect fWindowRect;
Style fTypedCharStyle;
Style fPrintedCharStyle;
Style fEchoedCharStyle;
UInt8 pad;
SInt16 fFontSize;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 139

Str255 fFontName;
};
typedef struct OTCfgRemoteTerminal OTCfgRemoteTerminal;

fVersion Must be 1.
fLocalEcho Set to TRUE for the terminal window to echo typed

characters; otherwise, set to FALSE. The default is FALSE.
fNonModal Must be FALSE.
fPowerUser Must be FALSE.
fQuitWhenPPPStarts Set to TRUE to cause the terminal window to quit when the

PPP connection is made. The default is TRUE.
fDontAskVarStr The default is FALSE.
fNoVarStrReplace Must be FALSE.
fLFAfterCR Must be FALSE.
fAskToSaveOnQuit Set to TRUE to cause ARA to ask to save changes when the

terminal window closes. The default is FALSE.
fWindowRect Must be zero.
fTypedCharStyle Style used for typed characters. The default is bold.
fPrintedCharStyle Style used for characters sent by the other end of the

connection. The default is plain.
fEchoedCharStyle Style used for echoed characters. The default is italic.
pad Must be zero.
fFontSize The font size. The default is 9 point.
fFontName The font in which characters are displayed. The default is

Monaco on Roman systems.
The preference type for this preference is kOTCfgRemoteTerminalPref, which is
defined as 'term'.

OTCfgRemoteUserMode 4

The OTCfgRemoteUserMode structure stores the current user mode and the
administration password.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

140 Protocol Structures

struct OTCfgRemoteUserMode {
UInt32 version;
OTCfgUserMode32 userMode;
Str255 adminPassword;

};
typedef struct OTCfgRemoteUserMode OTCfgRemoteUserMode;

version Depending how the preference was constructed, version
may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

userMode Current user mode. See the OTCfgUserMode preference
(page 109) enumeration for possible values.

adminPassword The administration password. The format is not
documented.

The preference type for this preference is kOTCfgRemoteUserModePref, which is
defined as 'usmd'.

OTCfgRemoteX25 4

The OTCfgRemoteX25 structure stores X.25 connection information.

struct OTCfgRemoteX25 {
UInt32 version;
UInt32 fType;
UInt32 additionalPtr;
FSSpec script;
UInt8 address[256];
UInt8 userName[256];
UInt8 closedUserGroup[5];
Boolean reverseCharge;

};

version Depending how the preference was constructed, version
may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 141

field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

fType Must be zero for standard dial-up connections.
additionalPtr Must be zero for standard dial-up connections.
script Must be zero for standard dial-up connections.
address Must be zero for standard dial-up connections.
userName Must be zero for standard dial-up connections.
closedUserGroup Must be zero for standard dial-up connections.
reverseCharge Must be zero for standard dial-up connections.
The preference type for this preference is kOTCfgRemoteX25Pref, which is defined
as 'x25 '.

IMPORTANT

Using Network Setup to configure X.25 connections is not
supported. �

Modem Structures 4

This section describes structures that store Modem control panel settings. The
structures are

� OTCfgModemGeneral (page 141) stores per-connection modem preferences.

� OTCfgModemApplication (page 142) stores the current user mode setting and
the window position of the Modem control panel.

� OTCfgModemLocks (page 143) stores the lock settings for the Modem control
panel.

OTCfgModemGeneral 4

The OTCfgModemGeneral structure stores most of the per-connection modem
preferences.

struct OTCfgModemGeneral
{

UInt32 version;
Boolean useModemScript;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

142 Protocol Structures

UInt8 pad;
FSSpec modemScript;
Boolean modemSpeakerOn;
Boolean modemPulseDial;
OTCfgModemDialogToneMode modemDialToneMode;
char lowerLayerName[kMaxProviderNameSize];

};

Field descriptions
version Depending how the preference was constructed, version

may be kOTCfgRemoteDefaultVersion or
kOTCfgRemoteAcceptedVersion. When reading the version
field, accept either value. When writing the version field,
set it to kOTCfgRemoteDefaultVersion.

useModemScript Set useModemScript to TRUE to indicate that a modem script
is to be used.

pad A value that must be zero.
modemScript The modem script that is to be used; this field is ignored if

a modem script is not to be used.
modemSpeakerOn Set modemSpeakerOn to TRUE to indicate dialing with the

modem speaker on. Otherwise, set modemSpeakerOn to FALSE.
modemPulseDial Set modemPulseDial to TRUE to indicate pulse dialing.

Otherwise, set modemPulseDial to FALSE for tone dialing.
modemDialToneMode The dial tone mode that controls the way in which the

modem handles dial tone. For possible values, see the
OTCfgModemDialingToneMode (page 171) enumeration.

lowerLayerName The name of the underlying serial port in C string format.
The preference type for the OTCfgModemGeneral structure is
kOTCfgModemGeneralPrefs, which is defined as 'ccl '.

OTCfgModemApplication 4

The OTCfgModemApplication structure stores the current user mode setting and
the window position of the Modem control panel.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 143

struct OTCfgModemApplication {
UInt32 version;
Point windowPos;
OTCfgUserMode32 userMode;

};

Field descriptions
version Must be 1.
windowPos Window position in global coordinates of the modem

control panel.
userMode Must be kOTCfgBasicUserModeUser mode because the

Modem control panel does not support any other mode.
The preference type for the OTCfgModemApplication structure is
kOTCfgModemApplicationPref, which is defined as 'mapt'.

OTCfgModemLocks 4

The OTCfgModemLocks structure stores the lock settings for the Modem control
panel.

struct OTCfgModemLocks {
UInt32 version;
UInt32 port;
UInt32 script;
UInt32 speaker;
UInt32 dialing;

};
typedef struct OTCfgModemLocks OTCfgModemLocks;

Field descriptions
version Must be 1.
port Set port to 1 to lock the setting for the underlying serial

port or to zero to unlock the setting.
script Set script to 1 to lock the modem script (CCL) or to zero to

unlock the setting.
speaker Set speaker to 1 to lock the speaker setting or to zero to

unlock the speaker setting.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

144 Protocol Structures

dialing Set dialing to lock the setting for pulse or tone dialing, or
set dialing to zero to unlock the setting.

The preference type for the OTCfgModemLocks structure is kOTCfgModemLocksPref,
which is defined as 'lkmd'.

AppleTalk Structures 4

This section describes the structures that store AppleTalk preferences. The
structures are

� OTCfgATalkGeneral (page 145) is a general structure holds the combined
preferences for each AppleTalk protocol.

� OTCfgATalkGeneralAARP (page 146) stores information for the AppleTalk
Address Resolution protocol (AARP).

� OTCfgATalkGeneralADSP (page 147) stores information for the AppleTalk Data
Stream Protocol (ADSP).

� OTCfgATalkGeneralASP (page 149) stores information for the AppleTalk
Session Protocol (ASP).

� OTCfgATalkGeneralATP (page 150) stores information for the AppleTalk
Transaction Protocol (ATP).

� OTCfgATalkGeneralDDP (page 151) stores information for the Datagram
Delivery Protocol (DDP).

� OTCfgATalkGeneralNBP (page 153) stores information for the Network Binding
Protocol (NBP).

� OTCfgATalkGeneralPAP (page 154) stores information for the Printer Access
Protocol (PAP).

� OTCfgATalkGeneralZIP (page 155) stores information for the Zone Information
Protocol (ZIP).

� OTCfgATalkLocks (page 156) stores information about whether AppleTalk
preferences have been locked.

� OTCfgATalkNetworkArchitecture (page 157) stores information about whether
classic networking or Open Transport is selected.

� OTCfgATalkPortDeviceType (page 158) stores information about the port for
which AppleTalk is configured.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 145

OTCfgATalkGeneral 4

The OTCfgATalkGeneral structure consists of structures for each AppleTalk
protocol.

struct OTCfgATalkGeneral
{

UInt16 fVersion;
UInt16 fNumPrefs;
OTPortRef fPort;
void* fLink;
void* fPrefs[8];
OTCfgATalkGeneralAARP aarpPrefs;
OTCfgATalkGeneralDDP ddpPrefs;
OTCfgATalkGeneralNBP nbpPrefs;
OTCfgATalkGeneralZIP zipPrefs;
OTCfgATalkGeneralATP atpPrefs;
OTCfgATalkGeneralADSP adspPrefs;
OTCfgATalkGeneralPAP papPrefs;
OTCfgATalkGeneralASP aspPrefs;

};

Field descriptions
fVersion Must be zero.
fNumPrefs Must be zero.
OTPortRef A reference to the port to which this configuration applies.
fLink Must be null. This field is used during run time.
fPrefs All elements must be initialized to null. This field is used

during run time.
aarpPrefs An OTCfgATalkGeneralAARP (page 146) structure.
ddpPrefs An OTCfgATalkGeneralDDP (page 151) structure.
nbpPrefs An OTCfgATalkGeneralNBP (page 153) structure.
zipPrefs An OTCfgATalkGeneralZIP (page 155) structure.
adspPrefs An OTCfgATalkGeneralADSP (page 147) structure.
papPrefs An OTCfgATalkGeneralPAP (page 154) structure.
aspPrefs An OTCfgATalkGeneralASP (page 149) structure.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

146 Protocol Structures

The preference type for the OTCfgATalkGeneral structure is
kOTCfgATalkGeneralPref, which is defined as 'atpf'.

OTCfgATalkGeneralAARP 4

The OTCfgATalkGeneralAARP structure defines parameters for the AppleTalk
Address Resolution Protocol (AARP) component of the AppleTalk protocol
stack and is a sub-structure of the OTCfgATalkGeneral structure.

struct OTCfgATalkGeneralAARP {
UInt16 fVersion;
UInt16 fSize;
UInt32 fAgingCount;
UInt32 fAgingInterval;
UInt32 fProtAddrLen;
UInt32 fHWAddrLen;
UInt32 fMaxEntries;
UInt32 fProbeInterval;
UInt32 fProbeRetryCount;
UInt32 fRequestInterval;
UInt32 fRequestRetryCount;

};
typedef struct OTCfgAARPPrefs OTCfgAARPPrefs;

Field descriptions
fVersion Always 1.
fSize The size of this structure.
fAgingCount The default is 8.
fAgingInterval The aging interval in milliseconds. The default is 1000.
fProtAddrLen The length of protocol addresses in bytes. Always 4. This

field is ignored by current versions of Open Transport.
fHWAddrLen The length of hardware addresses. Always 6. This field is

ignored by current versions of Open Transport.
fMaxEntries The default is 100.
fProbeInterval The probe interval in milliseconds. The default probe

interval is 200 milliseconds.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 147

fProbeRetryCount The number of times to retry a probe. The default is 10.
fRequestInterval The request interval in milliseconds. The default request

interval is 200 milliseconds.
fRequestRetryCount The number of times to retry a request. The default is 8.
For a detailed descriptions of AARP, see Inside AppleTalk, Second edition.
No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralADSP 4

The OTCfgATalkGeneralADSP structure defines parameters for the AppleTalk Data
Stream Protocol (ADSP) component of the AppleTalk protocol stack and is a
sub-structure of the OTCfgATalkGeneral structure.

struct OTCfgATalkGeneralADSP
{

UInt16 fVersion;
UInt16 fSize;
UInt32 fDefaultSendBlocking;
UInt32 fTSDUSize;
UInt32 fETSDUSize;
UInt32 fDefaultOpenInterval;
UInt32 fDefaultProbeInterval;
UInt32 fMinRoundTripTime;
UInt32 fDefaultSendInterval;
UInt32 fDefaultRecvWindow;
UInt8 fDefaultOpenRetries;
UInt8 fDefaultBadSeqMax;
UInt8 fDefaultProbeRetries;
UInt8 fMaxConsecutiveDataPackets;
Boolean fDefaultChecksum;
Boolean fDefaultEOM;

};

Field descriptions
fVersion Must be 1.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

148 Protocol Structures

fSize Must be the size in bytes of this structure.
fDefaultSendBlockingBytes, default is 16.
fTSDUSize The Transport Service Data Unit (TSDU), which is the

maximum amount of data that packets of this protocol can
carry. The default is 572.

fETSDUSize The extended TSDU (ETSDU) size. The default is 572.
fDefaultOpenInterval

The default open interval in milliseconds. The default is
3000.

fDefaultProbeInterval
The default probe interval in milliseconds. The default is
30000.

fMinRoundTripTime
The minimum round trip time in milliseconds. The default
is 100.

fDefaultSendInterval
The default send interval in milliseconds. The default is
100.

fDefaultRecvWindow The default receive window in bytes. Must be 27648. This
value is ignored by current versions of Open Transport.

fDefaultOpenRetries
The default number of open retries allowed. The default
value is 3.

fDefaultBadSeqMax The default maximum number of sequence errors. The
default value is 3.

fDefaultProbeRetries
The default number of probe retries. The default value is 3.

fMaxConsecutiveDataPackets
The maximum number of consecutive data packets. The
default value is 48.

fDefaultChecksum Whether checksumming is enabled. The default value is
FALSE.

fDefaultEOM The default end of header. The default value is FALSE.
For a detailed description ADSP, see Inside Macintosh: Networking with Open
Transport and Inside AppleTalk, Second edition.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 149

No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralASP 4

The OTCfgATalkGeneralASP structure defines parameters for the AppleTalk
Session Protocol (ASP) component of the AppleTalk protocol stack and is a
sub-structure of the OTCfgATalkGeneral structure.

IMPORTANT

Open Transport does not currently include a native
implementation of ASP. The classic AppleTalk
implementation of ASP ignores these preferences. �

struct OTCfgATalkGeneralASP
{

UInt16 fVersion;
UInt16 fSize;
UInt32 fDefaultTickleInterval;
UInt8 fDefaultTickleRetries;
UInt8 fDefaultReplies;

};

Field descriptions
fVersion Must be 1.
fSize The size in bytes of this structure.
fDefaultTickleInterval

The default tickle interval in milliseconds. This value must
be 30000. This value is ignored by current versions of Open
Transport.

fDefaultTickleRetries
The default number of times to retry sending a tickle. The
default value is 8. This value is ignored by current versions
of Open Transport.

fDefaultReplies Must be 8. This field is ignored by current versions of Open
Transport.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

150 Protocol Structures

For a detailed description of ASP, see Inside AppleTalk, Second Edition.

No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralATP 4

The OTCfgATalkGeneralATP structure defines parameters for the AppleTalk
Transaction Protocol (ATP) component of the AppleTalk protocol stack and is a
sub-structure of the OTCfgATalkGeneral structure.

struct OTCfgATalkGeneralATP
{

UInt16 fVersion;
UInt16 fSize;
UInt32 fTSDUSize;
UInt32 fDefaultRetryInterval;
UInt32 fDefaultRetryCount;
UInt8 fDefaultReleaseTimer;
Boolean fDefaultALOSetting;

};

Field descriptions
fVersion Must be 1.
fSize Must be sizeof(OTCfgATalkGeneralATP).
fTSDUSize The maximum amount of data that packets of this protocol

can carry. The default is 578.
fDefaultRetryInterval

The default retry interval in milliseconds. By default, this
value is 2000.

fDefaultRetryCount The default retry count. By default, this value is 8.
fDefaultReleaseTimer

The default release timer. The default value is zero. This
field has the same format as ATP_OPT_RELTIMER which is
described in Inside Macintosh: Networking with Open
Transport.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 151

fDefaultALOSetting The default “at least once” (ALO) setting. The default value
is FALSE.

For a detailed descriptions ATP, see Inside Macintosh: Networking with Open
Transport and Inside AppleTalk, Second edition.

No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralDDP 4

The OTCfgATalkGeneralDDP structure defines parameters for the Datagram
Delivery Protocol (DDP) component of the AppleTalk protocol stack.

struct OTCfgATalkGeneralDDP {
UInt16 fVersion;
UInt16 fSize;
UInt32 fTSDUSize;
UInt8 fLoadType;
UInt8 fNode;
UInt16 fNetwork;
UInt16 fRTMPRequestLimit;
UInt16 fRTMPRequestInterval;
UInt32 fAddressGenLimit;
UInt32 fBRCAgingInterval;
UInt32 fRTMPAgingInterval;
UInt32 fMaxAddrTries;
Boolean fDefaultChecksum;
Boolean fIsFixedNode;
UInt8 fMyZone[kZIPMaxZoneLength+1];

};
typedef struct OTCfgATalkGeneralDDP OTCfgATalkGeneralDDP;

Field descriptions
fVersion Must be 1.
fSize The size of this structure.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

152 Protocol Structures

fTSDUSize The maximum amount of data that packets of this protocol
can carry. Must be 586, which is the basic AppleTalk
datagram size.

fLoadType Whether AppleTalk is active. See discussion below for
possible values.

fNode Most recently acquired node number or the fixed node
number to use.

fNetwork Most recently acquired network number or the fixed
network number.

fRTMPRequestLimit Must be 3. This field is ignored by current versions of Open
Transport.

fRTMPRequestInterval
The request interval in milliseconds. This field must be 200.
This field is ignored by current versions of Open Transport.

fAddressGenLimit Address generation limit. The default is 250.
fBRCAgingInterval The Best Routing Cache (BRC) aging interval in

milliseconds. This field must be 4000. This field is ignored
by current versions of Open Transport.

fRTMPAgingInterval The Router Table Maintenance Protocol (RTMP) aging
interval in milliseconds. This field must be 5000. This field
is ignored by current versions of Open Transport.

fMaxAddrTries The maximum number of retries that OT makes when
trying to acquire an address. The default is 4096.

fDefaultChecksum When set to TRUE, a checksum is performed on the DDP
packet. When set to FALSE, no checksum is performed. The
default is FALSE.

fIsFixedNode Set to TRUE when fixed node and network numbers are
being used. The default value is FALSE.

fMyZone The most recently acquired zone.
For a detailed description of DDP, see Inside Macintosh: Networking with Open
Transport and Inside AppleTalk, Second edition.

The value of the fLoadType field controls whether AppleTalk is active. The
original definition of this field was as an inactivity timeout (in minutes), similar
to the inactivity timeout implemented for TCP/IP in current versions of Open
Transport.

Before Open Transport 1.0 was released, it was realized that loading and
unloading AppleTalk on demand was not possible, so the fLoadType field was

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 153

redefined as a flag, with zero meaning inactive and non-zero meaning active.
However, the default preferences were not updated to reflect this change. So, it
is possible to see the following values stored in this field:

typedef UInt8 OTCfgATalkUnloadOptions
enum {

kOTCfgATalkInactive = 0,
kOTCfgATalkDefaultUnloadTimeout = 5,
kOTCfgATalkActive = 0xFF

};

When reading, treat a value of zero as meaning that AppleTalk is inactive, and
treat any non-zero values as meaning that AppleTalk is active. When writing,
set fLoadType to kOTCfgATalkInactive or kOTCfgATalkActive. Never set fLoadType
to kOTCfgATalkDefaultUnloadTimeout.

No preference type is defined for the OTCfgATalkGeneralDDP structure. Instead,
access this structure through the OTCfgATalkGeneral (page 145) structure, which
has a preference type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralNBP 4

The OTCfgATalkGeneralNBP structure defines parameters for the Name Bind
Protocol (NBP) component of the AppleTalk protocol stack and is a
sub-structure of the OTCfgATalkGeneral structure.

struct OTCfgATalkGeneralNBP
{

UInt16 fVersion;
UInt16 fSize;
UInt32 fTSDUSize;
UInt32 fDefaultRetryInterval;
UInt32 fDefaultRetryCount;
Boolean fCaseSensitiveCompare;
UInt8 fPad;

};

Field descriptions
fVersion Must be 1.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

154 Protocol Structures

fSize The size in bytes of this structure.
fTSDUSize The maximum amount of data that packets of this protocol

can carry. The default is 584.
fDefaultRetryInterval

The default retry interval in milliseconds. By default, this
value is 800.

fDefaultRetryCount The default retry count. By default, this value is 3.
fCaseSensitiveCompare

Whether comparisons are case sensitive. The default value
is FALSE.

fPad A pad byte whose value must be zero.
For a detailed description of NBP, see Inside Macintosh: Networking with Open
Transport and Inside AppleTalk, Second edition.

No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralPAP 4

The OTCfgATalkGeneralPAP structure defines parameters for the Printer Access
Protocol (PAP) component of the AppleTalk protocol stack and is a
sub-structure of the OTCfgATalkGeneral structure.

struct OTCfgATalkGeneralPAP
{

UInt16 fVersion;
UInt16 fSize;
UInt32 fDefaultOpenInterval;
UInt32 fDefaultTickleInterval;
UInt8 fDefaultOpenRetries;
UInt8 fDefaultTickleRetries;
UInt8 fDefaultReplies;
Boolean fDefaultPAPEOMEnabled;

};

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 155

Field descriptions
fVersion Must be 1.
fSize The size in bytes of this structure.
fDefaultOpenInterval

The default open interval in milliseconds. The default value
is 2000.

fDefaultTickleInterval
The default tickle interval in milliseconds. The default
value is 15000.

fDefaultOpenRetries
The default number of times to retry an opening. The
default value is 0.

fDefaultTickleRetries
The default number of times to retry sending a tickle. The
default value is 8.

fDefaultReplies Must be 8. This field is ignored by current versions of Open
Transport.

fDefaultPAPEOMEnabled
By default, FALSE.

For a detailed description of PAP, see Inside Macintosh: Networking with Open
Transport and Inside AppleTalk, Second edition.

No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkGeneralZIP 4

The OTCfgATalkGeneralZIP structure defines parameters for the Zone
Information Protocol (ZIP) component of the AppleTalk protocol stack and is a
sub-structure of the OTCfgATalkGeneral structure.

struct OTCfgATalkGeneralZIP
{

UInt16 fVersion;
UInt16 fSize;
UInt32 fGetZoneInterval;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

156 Protocol Structures

UInt32 fZoneListInterval;
UInt16 fDDPInfoTimeout;
UInt8 fGetZoneRetries;
UInt8 fZoneListRetries;
Boolean fChecksumFlag;
UInt8 fPad;

};

Field descriptions
fVersion Must be 1.
fSize The size in bytes of this structure.
fGetZoneInterval The “get zone” interval in milliseconds. The default is 2000.
fZoneListInterval The “zone list” interval in milliseconds. The default is 2000.
fDDPInfoTimeout The “DDP info” timeout in milliseconds. The default is

4000.
fGetZoneRetries The “get zone” retry limit. The default is 4.
fZoneListRetries The “zone list” retry limit. The default is 4.
fChecksumFlag Whether checksumming is enabled. The default is zero.
fPad A pad byte whose value must be zero.
For a detailed description of ZIP, see Inside AppleTalk, Second edition.

No preference type is defined for this structure. Instead, access this structure
through the OTCfgATalkGeneral (page 145) structure, which has a preference
type of kOTCfgATalkGeneralPref.

OTCfgATalkLocks 4

The OTCfgATalkLocks structure stores information about whether AppleTalk
preferences have been locked by the administration mode in the control panel.

struct OTCfgATalkLocks
{

UInt16 fLocks;
};

Field descriptions
fLocks A bit field.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Structures 157

The following enumeration defines mask values for the fLocks field:

enum {
kOTCfgATalkPortLockMask = 0x01,
kOTCfgATalkZoneLockMask = 0x02,
kOTCfgATalkAddressLockMask = 0x04,
kOTCfgATalkConnectionLockMask= 0x08,
kOTCfgATalkSharingLockMask = 0x10

};

Constant descriptions

kOTCfgATalkPortLockMask
The bit set by this mask indicates that the port used by
AppleTalk is locked.

kOTCfgATalkZoneLockMask
The bit set by this mask indicates that the AppleTalk zone is
locked.

kOTCfgATalkAddressLockMask
The bit set by this mask indicates that the AppleTalk
address is locked.

kOTCfgATalkConnectionLockMask
The bit set by this mask indicates that the AppleTalk
Connection pop-up menu is locked.

kOTCfgATalkSharingLockMask
Reserved.

The preference type for the OTCfgATalkLocks structure is kOTCfgATalkLocksPref,
which is defined as 'lcks'.

OTCfgATalkNetworkArchitecture 4

The OTCfgATalkNetworkArchitecture structure was used by the Network
Software Selector in System 7.5.3 through 7.5.5. Despite its name and location,
this preference controlled both AppleTalk and TCP/IP services.

struct OTCfgATalkNetworkArchitecture
{

UInt32 fVersion;

C H A P T E R 4

Network Setup Protocol Structures and Data Types

158 Protocol Structures

OSType fNetworkArchitecture;
};
typedef struct OTCfgATalkNetworkArchitecture OTCfgATalkNetworkArchitecture;

Field descriptions
fVersion Must be zero.
fNetworkArchitecture

Must be 'OTOn'.
The preference type for the OTCfgATalkNetworkArchitecture structure is
kOTCfgATalkNetworkArchitecturePref, which is defined as 'neta'.

OTCfgATalkPortDeviceType 4

The OTCfgATalkPortDeviceType structure stores information about the port for
which AppleTalk is configured. This structure is not used by the AppleTalk
protocol stack, but it is used by the current AppleTalk control panel.

struct OTCfgATalkPortDeviceType
{

UInt16 fDeviceType;
};

Field descriptions
fDeviceType The Open Transport device type (such as

kOTEthernetDevice) or an ADEV ID for the current port.
The preference type for the OTCfgATalkPortDeviceType structure is
kOTCfgATalkPortDeviceTypePref, which is defined as 'ptfm'.

Infrared Structures 4

This section describes structure that stores Infrared preferences. The structure is

� OTCfgIRGeneral (page 159)

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 159

OTCfgIRGeneral 4

The OTCfgIRGeneral structure stores per-connection infrared settings.

struct OTCfgIRGeneral
{

UInt32 fVersion;
OTPortRef fPortRef;
OTCfgIRPortSettingfPortSetting;
Boolean fNotifyOnDisconnect;
Boolean fDisplayIRControlStrip;

};

Field descriptions
fVersion Must be zero.
fPortRef Reference to the infrared port.
OTCfgIRPortSetting A value that specifies the infrared protocol. For possible

values, see the OTCfgIRPortSetting (page 174) enumeration.
fNotifyOnDisconnect

TRUE if the user is to be notified when the IrDA protocol
disconnects; otherwise, FALSE.

fDisplayIRControlStrip
TRUE if the Infrared control strip is to be displayed;
otherwise, FALSE.

The preference type for the OTCfgIRGeneral structure is kOTCfgIRGeneralPref,
which is defined as 'atpf'.

Protocol Constants and Other Data Types 4

The following sections describe constants and other data types that are defined
for the protocols that use Network Setup:

� “TCP/IP Constants and Other Data Types” (page 160)

� “Apple Remote Access Constants and Other Data Types” (page 163)

� “Modem Constants and Other Data Types” (page 170)

C H A P T E R 4

Network Setup Protocol Structures and Data Types

160 Protocol Constants and Other Data Types

� “AppleTalk Constants and Other Data Types” (page 172)

� “Infrared Constants and Other Data Types” (page 173)

TCP/IP Constants and Other Data Types 4

The following enumeration defines type codes for the TCP/IP preferences.

enum {
kOTCfgTCPInterfacesPref = 'iitf',
kOTCfgTCPDeviceTypePref = 'dtyp',
kOTCfgTCPRoutersListPref = 'irte',
kOTCfgTCPSearchListPref = 'ihst',
kOTCfgTCPDNSServersListPref = 'idns',
kOTCfgTCPSearchDomainsPref = 'isdm',
kOTCfgTCPDHCPLeaseInfoPref = 'dclt',
kOTCfgTCPDHCPClientIDPref = 'dcid',
kOTCfgTCPUnloadAttrPref = 'unld',
kOTCfgTCPLocksPref = 'stng',
kOTCfgTCPPushBelowIPPref = 'crpt',
kOTCfgTCPPushBelowIPListPref= 'blip',

};

Constant descriptions

kOTCfgTCPInterfacesPref
Preference type for the OTCfgTCPInterfacesUnpacked
(page 112) structure.

kOTCfgTCPDeviceTypePref
Preference type for the TCP device type. Constants are
defined in Inside Macintosh: Networking with Open Transport
available at http://developer.apple.com/techpubs/mac/
NetworkingOT/NetworkingWOT-2.html.

kOTCfgTCPRoutersListPref
Preference type for the OTCfgTCPRoutersList (page 119)
structure.

kOTCfgTCPSearchListPref
Preference type for the OTCfgTCPSearchList (page 120)
structure.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 161

kOTCfgTCPDNSServersListPref
Preference type for the OTCfgTCPDNSServersList (page 116)
structure.

kOTCfgTCPSearchDomainsPref
Preference type for the OTCfgTCPSearchDomains (page 120)
structure.

kOTCfgTCPDNSServersListPref
Preference type for the OTCfgTCPDNSServersList (page 116)
structure.

kOTCfgTCPDHCPLeaseInfoPref
Preference type for the OTCfgTCPDHCPLeaseInfo (page 115)
structure.

kOTCfgTCPDHCPClientIDPref
Preference type for the DHCP client ID, stored as a Pascal
string.

kOTCfgTCPUnloadAttrPref
Preference type for the OTCfgTCPUnloadAttr (page 121)
structure.

kOTCfgTCPLocksPref Preference type for the OTCfgTCPLocks (page 116) structure.
kOTCfgTCPPushBelowIPPref

Preference type for a Pascal string containing the name of a
module to be pushed below IP.

kOTCfgTCPPushBelowIPListPref
Preference type for a list of modules to be pushed below IP
in ‘STR#’ resource format.

Masks for the kOTCfgProtocolOptionsPref Preference 4

The following enumeration defines masks for the kOTCfgProtocolOptionsPref
preference when it is in a TCP/IP entity:

enum {
kDontDoPMTUDiscoveryMask = 0x0001,
kDontShutDownOnARPCollisionMask = 0x0002,
kDHCPInformMask = 0x0004,

C H A P T E R 4

Network Setup Protocol Structures and Data Types

162 Protocol Constants and Other Data Types

kOversizeOffNetPacketsMask = 0x0008,
kDHCPDontPreserveLeaseMask = 0x0010,

};

Constant descriptions

kDontDoPMTUDiscoveryMask
If set, this bit turns off path MTU discovery.

kDontShutDownOnARPCollisionMask
If set, this bit disables ARP collision shutdown.

kDHCPInformMask If set, this bit enables DHCPINFORM instead of
DHCPREQUEST.

kOversizeOffNetPacketsMask
If set and with path MTU discovery off, this bit disables
limiting off-network packets to 576 bytes.

kDHCPDontPreserveLeaseMask
If set, this bit disables DHCP INIT-REBOOT capability.

For details about kDHCPInformMask and kDHCPDontPreserveLeaseMask, see Tech
Info Library article 58372 available at http://til.info.apple.com/techinfo.nsf/
artnum/n58372.

OTCfgTCPConfigMethod 4

The OTCfgTCPConfigMethod enumeration defines values that indicate how the
interface acquires an IP address:

enum UInt8 OTCfgTCPConfigMethod {
kOTCfgManualConfig,
kOTCfgRARPConfig,
kOTCfgBOOTPConfig,
kOTCfgDHCPConfig,
kOTCfgMacIPConfig

};

Constant descriptions

kOTCfgManualConfig Use the IP address that is stored in the fIPAddress field.
kOTCfgRARPConfig Obtain an address from a RARP server.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 163

kOTCfgBOOTPConfig Obtain an address from a BOOTP server.
kOTCfgDHCPConfig Obtain an address from a DHCP server.
kOTCfgMacIPConfig Configure TCP/IP to use MacIP.

Note
The TCP/IP control panel’s “PPP Server” address
acquisition method is actually implemented by setting
fConfigMethod to kOTCfgManualConfig and setting
fIPAddress to zero. �

Apple Remote Access Constants and Other Data Types 4

The following enumeration defines constants for the version field that appears
in Apple Remote Access (ARA) structures:

enum {
kOTCfgRemoteDefaultVersion = 0x00020003,
kOTCfgRemoteAcceptedVersion = 0x00010000

};

Constant descriptions

kOTCfgRemoteDefaultVersion
The version number with which new Remote Access
preferences should be created.

kOTCfgRemoteAcceptedVersion
A version number that is acceptable for existing Remote
Access preferences.

ARA Per-Connection Preferences Types 4

The following enumeration defines per-connection preference types for ARA:

enum {
kOTCfgRemoteARAPPref = 'arap',
kOTCfgRemoteAddressPref = 'cadr',
kOTCfgRemoteChatPref = 'ccha',
kOTCfgRemoteDialingPref = 'cdia',

C H A P T E R 4

Network Setup Protocol Structures and Data Types

164 Protocol Constants and Other Data Types

kOTCfgRemoteAlternateAddressPref= 'cead',
kOTCfgRemoteClientLocksPref = 'clks',
kOTCfgRemoteClientMiscPref = 'cmsc',
kOTCfgRemoteConnectPref = 'conn',
kOTCfgRemoteUserPref = 'cusr',
kOTCfgRemoteDialAssistPref = 'dass',
kOTCfgRemoteIPCPPref = 'ipcp',
kOTCfgRemoteLCPPref = 'lcp ',
kOTCfgRemoteLogOptionsPref = 'logo',
kOTCfgRemotePasswordPref = 'pass',
kOTCfgRemoteTerminalPref = 'term',
kOTCfgRemoteUserModePref = 'usmd',
kOTCfgRemoteSecurityDataPref = 'csec',
kOTCfgRemoteX25Pref = 'x25 ',

};

Constant descriptions

kOTCfgRemoteARAPPref
The preference type for the OTCfgRemoteARAP (page 124)
structure.

kOTCfgRemoteAddressPref
The preference type for that contains the number to dial, in
'TEXT' format, with a maximum of 255 characters. See also
OTCfgRemoteConnect (page 127).

kOTCfgRemoteChatPref
The preference type for that stores the log sin (chat) script,
in 'TEXT' format. See also OTCfgRemoteConnect (page 127).

kOTCfgRemoteDialingPref
The preference type for the OTCfgRemoteDialing (page 131)
structure.

kOTCfgRemoteAlternateAddressPref
The preference type for the OTCfgRemoteAlternateAddress
(page 123) structure.

kOTCfgRemoteClientLocksPref
The preference type for the OTCfgRemoteClientLocks
(page 125) structure.

kOTCfgRemoteClientMiscPref
The preference type for the OTCfgRemoteClientMisc
(page 127) structure.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 165

kOTCfgRemoteConnectPref
The preference type for the OTCfgRemoteConnect (page 127)
structure.

kOTCfgRemoteConnectPref
The preference type for the OTCfgRemoteConnect (page 127)
structure.

kOTCfgRemoteUserPref
The preference type that stores the user name as a Pascal
string.

kOTCfgRemoteDialAssistPref
The preference type for OTCfgRemoteDialAssist (page 130)
structure.

kOTCfgRemoteIPCPPref
The preference type for the OTCfgRemoteIPCP (page 132)
structure.

kOTCfgRemoteLCPPref
The preference type for the OTCfgRemoteLCP (page 133)
structure.

kOTCfgRemoteLogOptionsPref
The preference type for the OTCfgRemoteLogOptions
(page 135) structure.

kOTCfgRemotePasswordPref
The preference type for the OTCfgRemotePassword (page 135)
structure.

kOTCfgRemoteTerminalPref
The preference type for the OTCfgRemoteTerminal (page 138)
structure.

kOTCfgRemoteUserModePref
The preference type for the OTCfgRemoteUserMode (page 139)
structure.

kOTCfgRemoteSecurityDataPref
The preference type for a preference that stores data for a
plug-in security module. The format of the data is
determined by the security module. For external security
modules the format of the data is untyped.

kOTCfgRemoteX25Pref
The preference type for the OTCfgRemoteX25 (page 140)
structure.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

166 Protocol Constants and Other Data Types

ARA Global Preference Types 4

The following enumeration defines global preference types for Apple Remote
Access (ARA)

enum {
kOTCfgRemoteServerLocksPref = 'slks',
kOTCfgRemoteServerPortPref = 'port',
kOTCfgRemoteServerPref = 'srvr',
kOTCfgRemoteApplicationPref = 'capt'

};

Constant descriptions

kOTCfgRemoteServerLocksPref
Defined but not used by ARA.

kOTCfgRemoteServerPortPref
The preference type for the OTCfgRemoteServerPort
(page 137) structure.

kOTCfgRemoteServerPref
The preference type for the OTCfgRemoteServer (page 136)
structure.

kOTCfgRemoteApplicationPref
The preference type for the OTCfgRemoteApplication
(page 123) structure.

OTCfgRemotePPPConnectScript 4

The OTCfgRemotePPPConnectScript enumeration defines constants for use in the
chatMode field of the OTCfgRemoteConnect (page 127) structure:

typedef UInt32 OTCfgRemotePPPConnectScript;
enum {

OTCfgRemotePPPConnectScriptNone = 0,
OTCfgRemotePPPConnectScriptTerminalWindow = 1,
OTCfgRemotePPPConnectScriptScript = 2

};

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 167

Constant descriptions

OTCfgRemotePPPConnectScriptNone
No connect script is configured.

OTCfgRemotePPPConnectScriptTerminalWindow
A terminal window is used to make the connection.

OTCfgRemotePPPConnectScriptScript
A chat script is used to make the connection.

OTCfgRemoteProtocol 4

The OTCfgRemoteProtocol enumeration defines constant s for use in the
serialProtocolMode field of the OTCfgRemoteConnect (page 127) structure:

typedef UInt32 OTCfgRemoteProtocol;
enum {

kRemoteProtocolPPP = 1,
kRemoteProtocolARAP = 2,
kRemoteProtocolAuto = 3

};

Constant descriptions

kRemoteProtocolPPP The protocol is PPP only.
kRemoteProtocolARAP

The protocol is ARAP only.
kRemoteProtocolAuto

Auto-detect PPP or ARAP (not supported in ARA 3.5 and
later).

AppleTalk Remote Access Protocol (ARAP), an Apple Computer proprietary
dialup AppleTalk protocol, was developed before the AppleTalk Control
Protocol (ATCP, an implementation of AppleTalk over PPP) and is now
deprecated.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

168 Protocol Constants and Other Data Types

OTCfgRemoteLogLevel 4

The OTCfgRemoteLogLevel structure defines values for use in the logLevel field of
the OTCfgRemoteLogOptions (page 135) structure:

typedef UInt32 OTCfgRemoteLogLevel;
enum {

kOTCfgRemoteLogLevelNormal = 0,
kOTCfgRemoteLogLevelVerbose = 1

};

Constant descriptions

kOTCfgRemoteLogLevelNormal
Normal ARA logging.

kOTCfgRemoteLogLevelVerbose
Verbose ARA logging.

OTCfgRemoteDialMode 4

The OTCfgRemoteRedialMode enumeration defines values for the dialMode field of
the OTCfgRemoteDialing (page 131) structure:

typedef UInt32 OTCfgRemoteRedialMode;
enum {

kOTCfgRemoteRedialNone,
kOTCfgRemoteRedialMain,
kOTCfgRemoteRedialMainAndAlternate

};

Constant descriptions

kOTCfgRemoteRedialNone
Do not redial if the an attempt to dial fails.

kOTCfgRemoteRedialMain
Redial the main number only if an attempt to dial fails.

kOTCfgRemoteRedialMain
Redial the main number and the alternate number if an
attempt to dial fails.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 169

OTCfgRemoteAnswerMode 4

The OTCfgRemoteAnswerMode enumeration defines constants for the answerMode
field of the OTCfgRemoteServerPort (page 137) structure:

typedef UInt32 OTCfgRemoteAnswerMode;
enum {

kAnswerModeOff = 0,
kAnswerModeNormal = 1,
kAnswerModeTransfer = 2,
kAnswerModeCallback = 3

};

Constant descriptions

kAnswerModeOff Answering is disabled.
kAnswerModeNormal Answering is enabled.
kAnswerModeTransferAnswering as a callback server. This value is not valid for

the personal server.
kAnswerModeCallbackAnswering enabled in callback mode.

OTCfgRemoteNetworkProtocol 4

The OTCfgRemoteNetworkProtocol enumeration defines constants for the
networkProtoFlags field of the OTCfgRemoteServerPort (page 137) structure:

typedef UInt32 OTCfgRemoteNetworkProtocol;
enum {

kOTCfgNetProtoNone = 0,
kOTCfgNetProtoIP = 1,
kOTCfgNetProtoAT = 2,
kOTCfgNetProtoAny = (kOTCfgNetProtoIP | kOTCfgNetProtoAT)

};

Constant descriptions

kOTCfgNetProtoNone Do not allow any connections.
kOTCfgNetProtoIP Allow IPCP connections.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

170 Protocol Constants and Other Data Types

kOTCfgNetProtoAT Allow AppleTalk connections (ATCP and ARAP).
kOTCfgNetProtoAny Allow IPCP and AppleTalk connections.

OTCfgRemoteNetAccessMode 4

The OTCfgRemoteNetAccessMode enumeration defines constants for the
netAccessMode field of the OTCfgRemoteServerPort (page 137) structure:

typedef UInt8 OTCfgRemoteNetAccessMode;
enum {

kOTCfgNetAccessModeUnrestricted = 0,
kOTCfgNetAccessModeThisMacOnly

};

Constant descriptions

kOTCfgNetAccessModeUnrestricted
The connected client can see other entities on the server’s
network.

kOTCfgNetAccessModeThisMacOnly
The connected client can only see entities on the server
machine.

Modem Constants and Other Data Types 4

The following enumeration defines per-connection preference types for modem
preferences:

enum {
kOTCfgModemGeneralPrefs = 'ccl ',
kOTCfgModemLocksPref = 'lkmd',
kOTCfgModemAdminPasswordPref = 'mdpw',

};

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 171

Constant descriptions

kOTCfgModemGeneralPrefs
The preference type for the OTCfgModemGeneral (page 141)
structure.

kOTCfgModemLocksPref
The preference type for the OTCfgModemLocks (page 143)
structure.

kOTCfgModemAdminPasswordPref
Preference type for the preference that contains the
administration password.

Modem Global Preference Types 4

The following enumeration defines the global preference type for modem
preferences:

enum {
kOTCfgModemApplicationPref = 'mapt',

};

Constant descriptions

kOTCfgModemApplicationPref
Preference type for the OTCfgModemApplication (page 142)
structure.

OTCfgModemDialingToneMode 4

The OTCfgModemDialogToneMode enumeration defines constants for the
modemDialToneMode field of the OTCfgModemGeneral (page 141) structure:

typedef UInt32 OTCfgModemDialogToneMode;
enum {

kModemDialToneNormal,

C H A P T E R 4

Network Setup Protocol Structures and Data Types

172 Protocol Constants and Other Data Types

kModemDialToneIgnore,
kModemDialToneManual

};

Constant descriptions

kModemDialToneNormalWait for dial tone.
kModemDialToneIgnoreDo not wait for dial tone.
kModemDialToneManualManual dialing.

AppleTalk Constants and Other Data Types 4

The following enumerations define masks for the kOTCfgProtocolOptionsPref
preference when used in an AppleTalk entity:

enum {
kOTCfgATalkNoBadRouterUpNotification = 1 << 0,
kOTCfgATalkNoAllNodesTakenNotification = 1 << 1,
kOTCfgATalkNoFixedNodeTakenNotification = 1 << 2,
kOTCfgATalkNoInternetAvailableNotification = 1 << 3,
kOTCfgATalkNoCableRangeChangeNotification = 1 << 4,
kOTCfgATalkNoRouterDownNotification = 1 << 5,
kOTCfgATalkNoRouterUpNotification = 1 << 6,
kOTCfgATalkNoFixedNodeBadNotification = 1 << 7,

};

Each bit determines whether the AppleTalk protocol stack posts notifications for
the corresponding network event.

Per-connection AppleTalk Preference Types 4

The following enumeration defines constants for per-connection AppleTalk
preference types:

C H A P T E R 4

Network Setup Protocol Structures and Data Types

Protocol Constants and Other Data Types 173

enum {
kOTCfgATalkGeneralPref = 'atpf',
kOTCfgATalkLocksPref = 'lcks',
kOTCfgATalkPortDeviceTypePref= 'ptfm',

};

Global AppleTalk Preference Types 4

The following enumeration defines constants for global AppleTalk preference
types:

enum {
kOTCfgATalkNetworkArchitecturePref = 'neta'

};

Infrared Constants and Other Data Types 4

The following enumeration defines type codes for infrared preferences.

enum {
kOTCfgTypeInfraredPrefs = 'atpf',
kOTCfgTypeInfraredGlobal = 'irgo'

};

Constant descriptions

kOTCfgTypeInfraredPrefs
Type code for a preference that contains per-connection
infrared settings.

kOTCfgTypeInfraredGlobal
Type code for a preference that contains global infrared
settings.

C H A P T E R 4

Network Setup Protocol Structures and Data Types

174 Protocol Constants and Other Data Types

OTCfgIRPortSetting 4

The OTCfgIRPortSetting enumeration defines constants for use in the
OTCfgIRPortSetting field of the OTCfgIRGeneral (page 159) structure:

typedef UInt16 OTCfgIRPortSetting;
enum {

kOTCfgIRIrDA = 0,
kOTCfgIRIRTalk = 1

};

Constant descriptions

kOTCfgIRIrDA Specifies the Infrared Data Association (IrDA) protocol.
kOTCfgIRIRTalk Specifies the IRTalk protocol, Apple’s proprietary Infrared

protocol that was developed prior to the development of
IrDA.

175

Glossary

AARP See AppleTalk Address Resolution
Protocol.

Address Resolution Protocol (ARP) The
Internet protocol that maps an IP address to
a MAC address.

Apple Remote Access (ARA) The
mechanism by which computers running
Mac OS connect to remote sites.

AppleTalk Address Resolution Protocol
(AARP) The protocol that reconciles
addressing discrepancies in networks that
support more than one set of protocols. For
example, by resolving the differences
between an Ethernet addressing scheme and
the AppleTalk addressing scheme, AARP
facilitates the transport of DDP packets over
a high-speed EtherTalk connection.

AppleTalk Control Protocol (ATCP) The
protocol that establishes and configures
AppleTalk over PPP.

AppleTalk Data Stream Protocol
(ADSP) A connection-oriented protocol
that provides a reliable, full-duplex, byte
stream service between any two sockets in
an AppleTalk network. ADSP ensures
in-sequence, duplicate-free delivery of data
over its connections.

AppleTalk Session Protocol (ASP) A
general-purpose protocol that uses ATP to
provide session establishment, maintenance,
and teardown, along with request
sequencing.

AppleTalk Transaction Protocol (ATP) A
transport protocol that provides loss-free
transaction service between sockets. This
service allows exchanges between two
socket clients in which one client requests
the other to perform a particular task and to
report the results. ATP binds the request and
response together to ensure the reliable
exchange of request-response pairs.

ARA See Apple Remote Access.

area The highest level of organization in
the Network Setup database. Areas contain
entities. See also entity, named area,
temporary area.

ASP See AppleTalk Session Protocol.

ATCP See AppleTalk Control Protocol.

ATP See AppleTalk Transaction Protocol.

Bootstrap Protocol The protocol used by a
node to obtain the IP address of its Ethernet
interfaces from another node on the
network, thereby allowing the first node to
boot without local storage media.

BOOTP See Bootstrap Protocol.

current area The area in which
preferences are stored. Another name for the
default area.

database reference A value that represents
the open session with the Network Setup
database.

G L O S S A R Y

176

Datagram Delivery Protocol (DDP) The
network-layer protocol that is responsible
for the socket-to-socket delivery of
datagrams over an AppleTalk network.

DDP See Datagram Delivery Protocol.

default area The preferred name for the
area in which preferences are stored.
Another name for the current area.

DHCP See Dynamic Host Configuration
Protocol.

DNS See Domain Name System.

Domain Name System (DNS) The system
used on the Internet for translating the name
of a network node to an IP address.

Dynamic Host Configuration Protocol A
mechanism for assigning an IP address
dynamically so that the address can be
reassigned when the original assignee no
longer needs it.

entity The unit of organization within an
entity. See also global protocol entity,
network connection entity, set entity.

global protocol entity An entity that
contains information shared by all
connections for a particular protocol.

ICMP See Internet Control Message
Protocol.

International Telecommunication Union
Telecommunication Standardization
Sector An international body that
develops worldwide standards for
telecommunications technologies.

Internet Control Message Protocol
(ICMP) A network-layer Internet protocol
that reports errors and provides other
information relevant to IP packet
processing.

Internet Protocol (IP) 1) A set of protocols
including TCP, UDP, and ICMP. IP provides
features for addressing, type-of-service
specification, fragmentation and reassembly,
and security. 2) An IP network-layer
protocol offering a connectionless
internetwork service.

Internetwork Packet Exchange (IPX) A
network-layer protocol used for transferring
data between clients and servers.

IP See Internet Protocol.

IP Control Protocol (IPCP) The protocol
that establishes and configures IP over PPP.

IPCP See IP Control Protocol.

IPX See Internetwork Packet Exchange.

ITU-T See International
Telecommunication Union
Telecommunication Standardization Sector.

LCP See Link Control Protocol.

Link Control Protocol (LCP) The protocol
that establishes, configures, and tests
data-link connections for use by PPP.

MAC address See media access control
address.

MacIP A network-layer protocol that
encapsulates IP packets in DDP packets for
transmission over AppleTalk and that also
provides proxy ARP services.

maximum transmission unit (MTU) The
maximum number of bytes in a packet.

G L O S S A R Y

177

media access control address The six-byte
data link layer address that is required for
every device that connects to a network.
Other devices in the network use MAC
addresses to locate devices on the network
and to create and update routing tables.

MTU See maximum transmission unit.

Name Binding Protocol (NBP) The
AppleTalk transport-layer protocol that
translates a character string name to the
address of the corresponding socket client;
NBP enables AppleTalk protocols to
understand user-defined zones and device
names by providing and maintaining
translation tables that map names to
corresponding socket addresses.

named area An area in which preferences
are stored.

NBP See Name Binding Protocol.

network connection entity An entity that
contains information for a single instance of
a network protocol.

PAP See Printer Access Protocol.

PPP See Point-to-Point Protocol.

Point-to-Point Protocol (PPP) A protocol
that provides host-to-network connections
over synchronous and asynchronous
circuits. PPP was designed to work with
several network-layer protocols, such as IP,
IPX, and ARA.

preference The unit of organization
within an entity. Each preference
corresponds to a structure containing the
settings for a particular protocol.

preference type An OSType that identifies a
particular preference.

Printer Access Protocol (PAP) The
AppleTalk protocol that manages interaction
between computers and print servers; PAP
handles connection setup, maintenance, and
termination, as well as data transfer.

proxy ARP A variation of the ARP
protocol in which an intermediate device
(such as a router) sends an ARP response to
the requesting host on behalf of the node
whose MAC address was requested.

RARP See Reverse Address Resolution
Protocol.

Reverse Address Resolution Protocol
(RARP) The Internet protocol that maps
MAC addresses to IP addresses.

Routing Table Maintenance Protocol
(RTMP) The AppleTalk protocol used to
establish and maintain the routing
information that is required by routers in
order to route datagrams from any source
socket to any destination socket on the
network. Using RTMP, routers dynamically
maintain routing tables to reflect changes in
network topology.

RTMP See Routing Table Maintenance
Protocol.

set entity An entity that is used to group
global and network connection entities for a
particular purpose. For example, a set entity
can be used to group AppleTalk and TCP/IP
configurations for a particular location, such
as home or work.

TCP See Transmission Control Protocol/
Internet Protocol.

TCP/IP See Transmission Control
Protocol/Internet Protocol.

G L O S S A R Y

178

temporary area An area that is created
when a named area is modified.

Transmission Control Protocol/Internet
Protocol A connection-oriented
transport-layer Internet protocol that
provides reliable full-duplex data
transmission.

User Datagram Protocol (UDP) A
connectionless transport-layer Internet
protocol that exchanges datagrams without
acknowledgments or guaranteed delivery,
requiring that error processing and
retransmission be handled by other
protocols.

UDP See User Datagram Protocol.

ZIP See Zone Information Protocol.

X.25 An ITU-T standard that defines how
connections are maintained for remote
terminal access and computer
communications in public data networks.

Zone Information Protocol (ZIP) The
AppleTalk session-layer protocol that
maintains and discovers the network-wide
mapping of network number ranges to zone
names. NBP uses ZIP to determine which
networks contain nodes that belong to a
zone.

179

Index

A

active set entity
finding 43–48
number of 17, 43

ARA constants 163
architecture, Network Setup 11–14
area IDs

comparing 65
set entities, working with 48
unique 16

areas
closing 62, 65
counting 68
creating 70
deleting 72
duplicating 71
getting current 60
getting name 66
listing 68
modifying 63
opening 61, 66
setting current 61
setting name 67
writing modifications 64

C

CfgEntityInfo structure 99
CfgEntityRef structure 98, 99, 100
CfgPrefsHeaderstructure 100, 101
CfgSetsElement structure 103
CfgSetsStruct structure 101
CfgSetsVector structure 103
changing entity areas 82
class, entity 16
classes and types 104

closing
areas 62, 65
database 58
preferences 85

codes, result 110
committing changes 20
comparing entity references 76
constants

ARA 163
infrared 173
modem 170
Network Setup 106–109
TCP/IP 160

control panels 12
counting entities 73
creating entity areas 76
current area 16

D

database
opening 25, 27
reading 20
references 19
writing 20

decrypting data 93
default area 16
deleting entities 43, 78
duplicating

areas 71
entities 78

E

encrypting data 93

I N D E X

180

entities
active, finding 34
active set 17
changing 82
classes 16
classes and types 104
closing 85
counting 73
creating 76
deleting 43, 78
duplicating 78
getting name 79, 80
global protocol 16
IDs, getting 82
listing 30–34, 74
network connection 16
references 16
references, comparing 76
set 16
setting name 81
types 16
user-visibile names of 16

F

functions
OTCfgAbortAreaModifications 65
OTCfgBeginAreaModifications 63
OTCfgChangeEntityArea 82
OTCfgCloseArea 62
OTCfgCloseDatabase 58
OTCfgClosePrefs 85
OTCfgCreateArea 70
OTCfgCreateEntityArea 76
OTCfgDecrypt 93
OTCfgDeleteArea 72, 78
OTCfgDuplicateArea 71
OTCfgDuplicateEntity 78
OTCfgEncrypt 93
OTCfgGetAreaName 66
OTCfgGetAreasCount 68
OTCfgGetAreasList 68
OTCfgGetCurrentArea 60

OTCfgGetDefault 90
OTCfgGetEntitiesCount 73
OTCfgGetEntitiesList 74
OTCfgGetEntityArea 82
OTCfgGetEntityLogicalName 79
OTCfgGetEntityName 80
OTCfgGetPrefs 86
OTCfgGetPrefsSize 85
OTCfgGetPrefsTOC 89
OTCfgGetPrefsTOCCount 88
OTCfgGetTemplate 91
OTCfgInstallNotifier 94, 96
OTCfgIsSameAreaID 65
OTCfgIsSameEntityRef 76
OTCfgOpenArea 66
OTCfgOpenDatabase 58
OTCfgOpenName 61
OTCfgOpenPrefs 84
OTCfgSetAreaName 67
OTCfgSetCurrentArea 61
OTCfgSetEntityName 81
OTCfgSetPrefs 87
OTCfgWritingAreaModifications 64

G

getting
entity area IDs 82
entity names 79, 80

global protocol entities 16

H

history, version 23

I

icons 17
infrared constants 173
iterating preferences 40–41

I N D E X

181

K

kOTCfgClassNetworkConnection class 30
kOTCfgSetsStructPref preference 43
kOTCfgSetsVectorPref preference 43

L

legacy
preference files 13
synchronization 15, 21, 22–23, 43

library, Network Setup 14–15
listing entities 30–34, 74
low-level database 15

M

mid-level database 15
modem constants 170
multihoming 12, 43

N

named areas 16
network connection entities 16
Network Setup

constants 106–109
library 13, 14–15

notification routine
installing 94
removing 96

O

opening
areas 61, 66
database 25–27, 58
preferences 84

OTCfgAbortAreaModifications function 65
OTCfgATalkGeneralAARP structure 146
OTCfgATalkGeneralADSP structure 147
OTCfgATalkGeneralASP structure 149
OTCfgATalkGeneralATP structure 150
OTCfgATalkGeneralDDP structure 151
OTCfgATalkGeneralNBP structure 153
OTCfgATalkGeneralPAP structure 154
OTCfgATalkGeneral structure 145
OTCfgATalkGeneralZIP structure 155
OTCfgATalkLocks structure 156
OTCfgATalkNetworkArchictecture

structure 157
OTCfgATalkPortDeviceType structure 158
OTCfgBeginAreaModifications function 63
OTCfgChangeEntityArea function 82
OTCfgChgGetEntitiesList function 74
OTCfgChgGetEntityArea function 82
OTCfgCloseDatabase function 58
OTCfgClosePrefs function 85
OTCfgCreateEntityArea function 76
OTCfgDecrypt function 93
OTCfgDeleteEntity function 78
OTCfgDHCPLeaseInfo structure 115
OTCfgDuplicateArea function 71
OTCfgDuplicateEntity function 78
OTCfgEncrypt function 93
OTCfgGetAreaName function 66
OTCfgGetAreasCount function 68
OTCfgGetAreasList function 68
OTCfgGetCloseArea function 62
OTCfgGetCreateArea function 70
OTCfgGetCurrentArea function 60
OTCfgGetDefault function 90
OTCfgGetDeleteArea function 72
OTCfgGetEntitiesCount function 73
OTCfgGetEntityLogicalName function 79
OTCfgGetEntityName function 80
OTCfgGetPrefs function 86
OTCfgGetPrefsSize function 85
OTCfgGetPrefsTOCCount function 88
OTCfgGetPrefsTOC function 89
OTCfgGetSurrentArea function 61
OTCfgGetTemplate function 91
OTCfgInstallNotifier function 94, 96

I N D E X

182

OTCfgIRGeneral structure 159
OTCfgIsSameAreaID function 65
OTCfgIsSameEntityRef function 76
OTCfgModemApplication structure 141, 142
OTCfgModemLocks structure 143
OTCfgOpenArea function 66
OTCfgOpenDatabase function 58
OTCfgOpenName function 61
OTCfgOpenPrefs function 84
OTCfgRemoteAlternateAddress structure 123
OTCfgRemoteApplication structure 123
OTCfgRemoteARAP structure 124
OTCfgRemoteClientLocks structure 125
OTCfgRemoteClientMisc structure 127
OTCfgRemoteConnect structure 127
OTCfgRemoteDialAssist structure 130
OTCfgRemoteDialing structure 131
OTCfgRemoteIPCP structure 132
OTCfgRemoteLCP structure 133
OTCfgRemoteLogOptions structure 135
OTCfgRemotePassword structure 135
OTCfgRemoteServerPort structure 137
OTCfgRemoteServer structure 136
OTCfgRemoteTerminal structure 138
OTCfgRemoteUserMode structure 139
OTCfgRemoteX25 structure 140
OTCfgSetAreaName function 67
OTCfgSetEntityName function 81
OTCfgSetPrefs function 87
OTCfgTCPDNSServersList structure 116
OTCfgTCPInterfacesPackedPart structure 114
OTCfgTCPInterfacesPacked structure 114
OTCfgTCPInterfacesUnpacked structure 112
OTCfgTCPLocks structure 116
OTCfgTCPRoutersListEntry structure 119
OTCfgTCPRoutersList structure 119
OTCfgTCPSearchDomains structure 120
OTCfgTCPSearchList structure 120
OTCfgTCPUnloadAttr structure 121
OTCfgWritingAreaModifications function 64

P

packing TCP/IP interface preferences 50–51
preferences

coherency 21
getting

default value 90
size of 85
template 91

getting default value 90
getting value of 86
iterating 40–41
opening 84
reading fixed-size 35–37
reading variable-size 37–39
record headers

counting 88
getting 89

setting value of 87
writing 39–40

Preferences folder 11
preference types 17

R

reading
closing the database after 28
fixed-size preferences 35–37
opening for 20, 25–26
variable-size preferences 37–39

record headers
counting 88
getting 89

Remote Access preferences 53–54
resource files 12
result codes 110

S

sample database structure 17–19
scripting 13

I N D E X

183

set entities 16
active, number of 43
using 42–49

setting entity names 81
structures
CfgEntityInfo 99
CfgEntityRef 98, 99, 100
CfgPrefsHeader 100, 101
CfgSetsElement 103
CfgSetsStruct 101
CfgSetsVector 103
OTCfgATalkGeneral 145
OTCfgATalkGeneralAARP 146
OTCfgATalkGeneralADSP 147
OTCfgATalkGeneralASP 149
OTCfgATalkGeneralATP 150
OTCfgATalkGeneralDDP 151
OTCfgATalkGeneralNBP 153
OTCfgATalkGeneralPAP 154
OTCfgATalkGeneralZIP 155
OTCfgATalkLocks 156
OTCfgATalkNetworkArchictecture 157
OTCfgATalkPortDeviceType 158
OTCfgDHCPLeaseInfo 115
OTCfgIRGeneral 159
OTCfgModemApplication 141, 142
OTCfgModemLocks 143
OTCfgRemoteAlternateAddress 123
OTCfgRemoteApplication 123
OTCfgRemoteARAP 124
OTCfgRemoteClientLocks 125
OTCfgRemoteClientMisc 127
OTCfgRemoteConnect 127
OTCfgRemoteDialAssist 130
OTCfgRemoteDialing 131
OTCfgRemoteIPCP 132
OTCfgRemoteLCP 133
OTCfgRemoteLogOptions 135
OTCfgRemotePassword 135
OTCfgRemoteServer 136
OTCfgRemoteServerPort 137
OTCfgRemoteTerminal 138
OTCfgRemoteUserMode 139
OTCfgRemoteX25 140
OTCfgTCPDNSServersList 116

OTCfgTCPInterfacesPacked 114
OTCfgTCPInterfacesPackedPart 114
OTCfgTCPInterfacesUnpacked 112
OTCfgTCPLocks 116
OTCfgTCPRoutersList 119
OTCfgTCPRoutersListEntry 119
OTCfgTCPSearchDomains 120
OTCfgTCPSearchList 120
OTCfgTCPUnloadAttr 121

T

TCP/IP
constants 160
preferences 49–53

temporary area 20
third-party developers 55
type, entity 16
types and classes 104

U

unpacking TCP/IP interface preferences 52–53

V

version history 23

W

writing
closing the database after 28–29
opening for 20, 26–27
preferences 39–40

I N D E X

184

	Network Setup
	Contents
	Figures, Tables, and Listings
	About This Manual
	Conventions Used in This Manual
	For More Information

	About Network Setup
	Network Setup Architecture
	Inside the Network Setup Library
	Network Setup Database Fundamentals
	Database Structure
	Database Structure Example
	Database Operations
	Preference Coherency

	Legacy Issues
	Legacy Synchronization Algorithm

	Network Setup Version History

	Using Network Setup
	Opening and Closing the Network Setup Database
	Opening the Database for Reading
	Opening the Database for Writing
	Closing the Database After Reading
	Closing the Database After Writing

	Working with Entities
	Listing All Entities
	Finding an Active Entity

	Reading and Writing Preferences
	Reading Fixed-size Preferences
	Reading Variable-size Preferences
	Writing Preferences
	Iterating the Preferences in an Entity

	Working with Sets
	Finding the Active Set Entity
	Areas and Sets

	Protocol-specific Topics
	TCP/IP Notes
	Remote Access Notes
	Modem Notes

	Notes for Third Parties
	Storing Third-party Preferences in Apple Entities
	Network Setup and Third-party Protocol Stacks

	Network Setup Reference
	Network Setup Functions
	Opening and Closing the Network Setup Database

	OTCfgOpenDatabase
	OTCfgCloseDatabase
	Managing Areas

	OTCfgGetCurrentArea
	OTCfgSetCurrentArea
	OTCfgOpenArea
	OTCfgCloseArea
	OTCfgBeginAreaModifications
	OTCfgCommitAreaModifications
	OTCfgAbortAreaModifications
	OTCfgIsSameAreaID
	OTCfgGetAreaName
	OTCfgSetAreaName
	OTCfgGetAreasCount
	OTCfgGetAreasList
	OTCfgCreateArea
	OTCfgDuplicateArea
	OTCfgDeleteArea
	Managing Entities

	OTCfgGetEntitiesCount
	OTCfgGetEntitiesList
	OTCfgIsSameEntityRef
	OTCfgCreateEntity
	OTCfgDeleteEntity
	OTCfgDuplicateEntity
	OTCfgGetEntityLogicalName
	OTCfgGetEntityName
	OTCfgSetEntityName
	OTCfgGetEntityArea
	OTCfgChangeEntityArea
	Managing Preferences

	OTCfgOpenPrefs
	OTCfgClosePrefs
	OTCfgGetPrefsSize
	OTCfgGetPrefs
	OTCfgSetPrefs
	OTCfgGetPrefsTOCCount
	OTCfgGetPrefsTOC
	OTCfgGetDefault
	OTCfgDeletePrefs
	OTCfgGetTemplate
	Preference Utilities

	OTCfgEncrypt
	OTCfgDecrypt
	Installing and Removing a Notification Callback

	OTCfgInstallNotifier
	OTCfgRemoveNotifier
	Application-Defined Routines

	Notification Callback Routine
	Network Setup Structures and Data Types
	CfgDatabaseRef
	CfgAreaID
	CfgEntityRef
	CfgEntityInfo
	CfgEntityAccessID
	CfgPrefsHeader
	CfgResourceLocator
	CfgSetsStruct
	CfgSetsElement
	CfgSetsVector
	Network Setup Constants
	Entity Classes and Types
	Wildcard Classes and Types

	Common Preference Types
	Per-connection Preference Types
	Global Preference Types
	Set Entity Preference Types
	Backward Compatibility Preference Types
	Global Backward Compatibility Preference Types
	OTCfgUserMode Preference

	Invalid Area ID

	Result Codes

	Network Setup Protocol Structures and Data Types
	Protocol Structures
	TCP/IP Structures

	OTCfgTCPInterfacesUnpacked
	OTCfgTCPInterfacesPacked
	OTCfgTCPInterfacesPackedPart
	OTCfgTCPDHCPLeaseInfo
	OTCfgTCPDNSServersList
	OTCfgTCPLocks
	OTCfgTCPRoutersList
	OTCfgTCPRoutersListEntry
	OTCfgTCPSearchDomains
	OTCfgTCPSearchList
	OTCfgTCPUnloadAttr
	Apple Remote Access Structures

	OTCfgRemoteAlternateAddress
	OTCfgRemoteApplication
	OTCfgRemoteARAP
	OTCfgRemoteClientLocks
	OTCfgRemoteClientMisc
	OTCfgRemoteConnect
	OTCfgRemoteDialAssist
	OTCfgRemoteDialing
	OTCfgRemoteIPCP
	OTCfgRemoteLCP
	OTCfgRemoteLogOptions
	OTCfgRemotePassword
	OTCfgRemoteServer
	OTCfgRemoteServerPort
	OTCfgRemoteTerminal
	OTCfgRemoteUserMode
	OTCfgRemoteX25
	Modem Structures

	OTCfgModemGeneral
	OTCfgModemApplication
	OTCfgModemLocks
	AppleTalk Structures

	OTCfgATalkGeneral
	OTCfgATalkGeneralAARP
	OTCfgATalkGeneralADSP
	OTCfgATalkGeneralASP
	OTCfgATalkGeneralATP
	OTCfgATalkGeneralDDP
	OTCfgATalkGeneralNBP
	OTCfgATalkGeneralPAP
	OTCfgATalkGeneralZIP
	OTCfgATalkLocks
	OTCfgATalkNetworkArchitecture
	OTCfgATalkPortDeviceType
	Infrared Structures

	OTCfgIRGeneral
	Protocol Constants and Other Data Types
	TCP/IP Constants and Other Data Types

	Masks for the kOTCfgProtocolOptionsPref Preference
	OTCfgTCPConfigMethod
	Apple Remote Access Constants and Other Data Types

	ARA Per-Connection Preferences Types
	ARA Global Preference Types
	OTCfgRemotePPPConnectScript
	OTCfgRemoteProtocol
	OTCfgRemoteLogLevel
	OTCfgRemoteDialMode
	OTCfgRemoteAnswerMode
	OTCfgRemoteNetworkProtocol
	OTCfgRemoteNetAccessMode
	Modem Constants and Other Data Types

	Modem Global Preference Types
	OTCfgModemDialingToneMode
	AppleTalk Constants and Other Data Types

	Per-connection AppleTalk Preference Types
	Global AppleTalk Preference Types
	Infrared Constants and Other Data Types

	OTCfgIRPortSetting

	Glossary
	Index

